分析 由函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上單調(diào)遞減,可得$\left\{\begin{array}{l}-\frac{a}{2}≥1\\ a<0\\-\frac{1}{2a}≤1\end{array}\right.$,解得實數(shù)a的取值范圍.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上單調(diào)遞減,
∴$\left\{\begin{array}{l}-\frac{a}{2}≥1\\ a<0\\-\frac{1}{2a}≤1\end{array}\right.$,
解得a∈(-∞,-2],
故答案為:(-∞,-2]
點評 本題考查的知識點是分段函數(shù)的應用,正確理解分段函數(shù)的單調(diào)性,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {4} | B. | {1,2,4,5} | C. | {1,2,3,4,5} | D. | {a,1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2$\sqrt{3}$,+∞) | B. | (-∞,2$\sqrt{3}$] | C. | (-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞) | D. | [-2$\sqrt{3}$,2$\sqrt{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x+1 | B. | y=$\sqrt{x+1}$ | C. | y=($\frac{1}{2}$)x | D. | y=-$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com