如圖,AB,CD均為圓O的直徑,CE⊥圓O所在的平面,BF∥CE,求證:
(1)BC⊥平面ACE;
(2)面BDF∥平面ACE.
考點(diǎn):直線與平面垂直的判定,平面與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(1)通過證明平面ACE內(nèi)的直線CE與AC都垂直BC,可得BC⊥平面ACE;
(2)證明BD∥平面ACE、BF∥平面ACE,即可證明面BDF∥平面ACE.
解答: 證明:(1)因?yàn)镃E⊥圓O所在的平面,BC?圓O所在的平面,
所以CE⊥BC,
因?yàn)锳B為圓O的直徑,點(diǎn)C在圓O上,所以AC⊥BC,
因?yàn)锳C∩CE=C,AC,CE?平面ACE,
所以BC⊥平面ACE;
(2)由(1)AC⊥BC,又因?yàn)镃D為圓O的直徑,
所以BD⊥BC,
因?yàn)锳C,BC,BD在同一平面內(nèi),所以AC∥BD.
因?yàn)锽D?平面ACE,AC?平面ACE,所以BD∥平面ACE.
因?yàn)锽F∥CE,同理可證BF∥平面ACE,
因?yàn)锽D∩BF=B,BD,BF?平面BDF,
所以平面BDF∥平面ACE.
點(diǎn)評:本題考查平面與平面垂直的判定定理,直線與平面平行的判定定理的應(yīng)用,考查空間想象能力以及邏輯推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-2x-2與g(x)=-x+n在[-1,3]上是“關(guān)聯(lián)函數(shù)”,則n的取值范圍是( 。
A、(-∞,0]
B、(-∞,4]
C、(-
9
4
,0]
D、(-
9
4
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,PA=PD=2,底面ABCD是直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2
2

(1)求直線PC與平面PAD所成的角;
(2)求二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈N*,設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R.
(1)求函數(shù)g(x)=x2•f1(x),x∈[0,2]的最值.(其中f1(x)=1-x);
(2)求函數(shù)y=f2(x)-kx(k∈R)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且sin2C+
3
cos(A+B)=0.
(1)若a=4,c=
13
,求b的長;
(2)若C>A,A=60°,AB=5,求
AB
BC
+
BC
CA
+
CA
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)y=x2-2|x|-1的圖象,并說明該圖象與y=x2-2x-1的圖象的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo)(m,n),求:
(1)點(diǎn)P在直線x+y=7上的概率;
(2)點(diǎn)P在圓x2+y2=25外的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),直線l:y=kx+m(k≠0,m≠0),直線l交橢圓C與P,Q兩點(diǎn).
(Ⅰ)若k=1,橢圓C經(jīng)過點(diǎn)(
2
,1),直線l經(jīng)過橢圓C的焦點(diǎn)和頂點(diǎn),求橢圓方程;
(Ⅱ)若k=
1
2
,b=1,且kOP,k,kOQ成等比數(shù)列,求三角形OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,直線l:y=-x+2
2
與以原點(diǎn)為圓心、以橢圓C1的短半軸長為半徑的圓相切.求橢圓C1的方程.

查看答案和解析>>

同步練習(xí)冊答案