已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值為,最小值為,求證:
(2)當時,對于給定的負數(shù)a,有一個最大的正數(shù)m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結論.
(3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.
【答案】分析:(1)利用反證法證明,若a等于0,得到c也等于0,所以f(x)等于2bx,得到f(2)與f(-2)互為相反數(shù),不合題意;若a不為0,由a+c=0,解得c=-a,代入f(x)中,求出二次函數(shù)的對稱軸,假設對稱軸小于-2或大于2,即可得到對稱軸在區(qū)間的左外側或右外側,得到f(x)為單調函數(shù),函數(shù)的最值在x=2,-2取到,把2和-2代入得到最值互為相反數(shù),不合題意,所以假設錯誤,綜上,得證;
(2)把b與c的值代入f(x)中,配方得到頂點式,由a小于0,得到函數(shù)有最大值,表示出這個最大值,當最大值大于5時,求出此時a的范圍,又最大值小于-,M(a)是方程ax2+8x+3=5的較小根,利用求根公式求出M(a)即可判斷出M(a)小于;當最大值小于等于5時,求出此時a的范圍,最大值大于-,M(a)是方程ax2+8x+3=-5的較大根,根據(jù)求根公式求出M(a)即可判斷M(a)小于等于,又大于,即可得到M(a)的最大值;
(3)求出f(x)的導函數(shù),由a大于0,求出函數(shù)有最大值讓其等于2,得到a與b的關系式,由-2≤f(0)=4a=4a+4b+4c-4(a+b)=f(2)-4≤2-4=-2,得c的值,又因為|f(x)|≤2,所以f(x)≥-2=f(0),即可得到x=0時,函數(shù)取得最小值,表示出對稱軸讓其等于0,即可求得b的值,進而求出a的值,把a,b和c的值代入即可確定出f(x)的解析式.
解答:解:(1)若a=0,則c=0,f(x)=2bx,f(2)=4b,f(-2)=-4b,不合題意;
若a≠0時,由a+c=0,得f(x)=ax2+2bx-4a,
對稱軸為x=-,假設∈(-∞,-2)∪(2,+∞),
區(qū)間[-2,2]在對稱軸的左外側或右外側,所以f(x)在[-2,2]上是單調函數(shù),
則f(x)的最值必在x=2,x=-2處取到,
f(2)=4b,f(-2)=-4b,f(2)+f(-2)=0≠+(-)=,
所以假設錯誤,則||≤2,
綜上,得到||≤2;
(2)

把b=4,c=代入得:f(x)=ax2+8x+3=a+3-,
∵a<0,所以f(x)max=3-
①當3->5,即-8<a<0時,
M(a)滿足:-8<a<0且0<M(a)<-
所以M(a)是方程ax2+8x+3=5的較小根,
則M(a)===
②當3-≤5即a≤-8時,此時M(a)≥-,
所以M(a)是ax2+8x+3=-5的較大根,
則M(a)===,
當且經(jīng)當a=-8時取等號,
由于,因此當且經(jīng)當a=-8時,M(a)取最大值;
(3)求得f′(x)=2ax+2b,
∵a>0,∴f(x)max=2a+2b=2,即a+b=1,
則-2≤f(0)=4a=4a+4b+4c-4(a+b)=f(2)-4≤2-4=-2,
∴4c=-2,解得c=-
又∵|f(x)|≤2,所以f(x)≥-2=f(0)
∴f(x)在x=0處取得最小值,且0∈(-2,2),
∴-=0,解得b=0,從而a=1,
∴f(x)=x2-2.
點評:此題考查學生會利用反證法進行證明,考查了數(shù)形結合的數(shù)學思想,會求二次函數(shù)在閉區(qū)間上的最值,掌握二次函數(shù)的圖象與性質,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

例2:已知f(x)=ax2+bx+c的圖象過點(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
x2+12
對一切實數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,則f(2)的取值范圍是
[2,10]
[2,10]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在區(qū)間(
1
2
,1)
上不單調,則
3b-2
3a+2
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)無零點,則g(x)>0對?x∈R成立;
②若f(x)有且只有一個零點,則g(x)必有兩個零點;
③若方程f(x)=0有兩個不等實根,則方程g(x)=0不可能無解
其中真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2-3ax+a2-1(a<0),則f(3),f(-3),f(
3
2
)從小到大的順序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步練習冊答案