【題目】甲、乙、丙、丁四人進行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標系中方格內(nèi)的16個棋子(如圖所示),甲從中記下某個棋子的坐標;第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標.告訴丙棋子的縱坐標,告訴丁棋子的橫坐標與縱坐標相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標為_____.

【答案】

【解析】

根據(jù)題意,得出乙棋子必落在橫坐標為2,5,6,7上,丙棋子必落在縱坐標為0,1,3,4,5,7上,再根據(jù)橫縱坐標相等,即可求解,得到答案.

由題意,乙只知道棋子的橫坐標,又無法確定,所以棋子必落在橫坐標為2,5,6,7上,接下來丙知道棋子的縱坐標,又無法確定,所以棋子必落在縱坐標為0,1,3,4,5,7上,這些橫縱坐標相等的點只有,所以丁說棋子的坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,在線段上取一點,沿著過點的直線將矩形右下角折起,使得右下角頂點恰好落在矩形的左邊邊上.設(shè)折痕所在直線與交于點,記折痕的長度為,翻折角

(1)探求的函數(shù)關(guān)系,推導(dǎo)出用表示的函數(shù)表達式;

(2)設(shè)的長為,求的取值范圍;

(3)確定點在何處時,翻折后重疊部分的圖形面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,“若存在,必有”,則稱數(shù)列具有性質(zhì).

(1)若數(shù)列滿足,判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)?

(2)對于無窮數(shù)列,設(shè),求證:若數(shù)列具有性質(zhì),則必為有限集;

(3)已知是各項均為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),是否存在正整數(shù),,使得,,…,,…成等差數(shù)列.若存在,請加以證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,點分別為的中點.

1)求證:平面平面EFD;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,,,且在平面上的射影在線段

)求證:;

)設(shè)二面角,求的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程與直線的極坐標方程;

(2)若射線與曲線交于點(不同于原點),與直線交于點,直線與極軸所在直線交于點.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三梭柱ABCA1B1C1中,ACBC,E,F分別為AB,A1B1的中點.

1)求證:AF∥平面B1CE;

2)若A1B1,求證:平面B1CE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式m-|x-2|≥1,其解集為[0,4].

(1)m的值;

(2)a,b均為正實數(shù),且滿足abm,求a2b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了人,將調(diào)查情況進行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

)完成被調(diào)查人員的頻率分布直方圖.

)若從年齡在,的被調(diào)查者中各隨機選取人進行追蹤調(diào)查,求恰有人不贊成的概率.

)在在條件下,再記選中的人中不贊成車輛限行的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習冊答案