【題目】對(duì)于無窮數(shù)列,“若存在,必有”,則稱數(shù)列具有性質(zhì).
(1)若數(shù)列滿足,判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)?
(2)對(duì)于無窮數(shù)列,設(shè),求證:若數(shù)列具有性質(zhì),則必為有限集;
(3)已知是各項(xiàng)均為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),是否存在正整數(shù),,使得,,,…,,…成等差數(shù)列.若存在,請(qǐng)加以證明;若不存在,說明理由.
【答案】(1)見解析;
(2)見解析;
(3)見解析.
【解析】
(1)根據(jù)題中所給的條件,利用定義判斷可得數(shù)列不具有性質(zhì),具有性質(zhì);
(2)根據(jù)數(shù)列具有性質(zhì),得到數(shù)列元素個(gè)數(shù),從而證得結(jié)果;
(3)依題意,數(shù)列是各項(xiàng)為正數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),可證得存在整數(shù),使得是等差數(shù)列.
(1)因?yàn)?/span>,
,但,所以數(shù)列不具有性質(zhì),
同理可得數(shù)列具有性質(zhì);
(2)因?yàn)閿?shù)列具有性質(zhì),
所以一定存在一組最小的且,滿足,即,
由性質(zhì)的含義可得,,,,
所以數(shù)列中,從第項(xiàng)開始的各項(xiàng)呈現(xiàn)周期性規(guī)律:
為一個(gè)周期中的各項(xiàng),
所以數(shù)列中最多有個(gè)不同的項(xiàng),
所以最多有個(gè)元素,即為有限集;
(3)因?yàn)閿?shù)列具有性質(zhì),又具有性質(zhì),
所以存在,使得,
其中分別是滿足上述關(guān)系式的最小的正整數(shù),
由性質(zhì)的含義可得,
若,則取,可得,
若,則取,可得,
記,則對(duì)于,
有,顯然,
由性質(zhì)的含義可得:,
所以
,
所以,
又滿足的最小的正整數(shù),
所以,,
所以,
所以,
取,所以,若是偶數(shù),則,
若是奇數(shù),
則,
所以,,
所以是公差為1的等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動(dòng),平面,且,點(diǎn)分別是、的中點(diǎn).
(1)求證:;
(2)若,求點(diǎn)平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績(jī)將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績(jī)和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?
(2)利用分層抽樣從持“不贊成”意見家長(zhǎng)中抽取5名參加學(xué)校交流活動(dòng),從中選派2名家長(zhǎng)發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)國(guó)際智能產(chǎn)業(yè)博覽會(huì)(智博會(huì))每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計(jì)圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國(guó)國(guó)際智博會(huì)服務(wù)的志愿者.
(1)若“嘉賓”小組需要2名志愿者,求這2人分別來自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示)
(2)若“法醫(yī)”小組的3名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,用表示抽出志愿者來自重慶醫(yī)科大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)常數(shù),函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)設(shè),不等式的解集為,不等式的解集為,當(dāng)時(shí),是否存在正整數(shù),使得或成立.若存在,試找出所有的m;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行一項(xiàng)益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個(gè)棋子(如圖所示),甲從中記下某個(gè)棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對(duì)話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺(tái)) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;
(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
有購買意愿對(duì)應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com