10.已知函數(shù)f(x)=x2-2x+$\frac{1}{2}$,g(x)=x+$\frac{1}{x}$,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|g(x)-g(y)>0},則從M中隨機(jī)取一個(gè)點(diǎn)A,則A落在N中的概率為$\frac{1}{2}$.

分析 首先分別求出區(qū)域M,N的面積,由幾何概型的公式,利用面積比求概率.

解答 解:由已知f(x)+f(y)=x2-2x+$\frac{1}{2}$+y2-2y+$\frac{1}{2}$
=(x-1)2+(y-1)2-1≤0,
所以M:=(x-1)2+(y-1)2≤1,是圓心為(1,1)
,半徑為1 的圓面,面積為π,g(x)-g(y)
=x+$\frac{1}{x}$-y-$\frac{1}{y}$>0,整理得N:(x-y)(xy-1)>0,
對(duì)應(yīng)區(qū)域如圖陰影部分,
由于圖形的對(duì)稱性,S1=S2,所以N對(duì)應(yīng)區(qū)域面積為半圓面積$\frac{π}{2}$,由幾何概型的公式得到從M中隨機(jī)取一個(gè)點(diǎn)A,則A落在N中的概率為:$\frac{\frac{π}{2}}{π}=\frac{1}{2}$;
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了幾何概型的概率公式運(yùn)用;關(guān)鍵是明確對(duì)應(yīng)區(qū)域的面積,利用面積比求得概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=\frac{1}{2}(x-2a)+\frac{lnx}{x}$(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)曲線y=xf(x) 是否存在經(jīng)過原點(diǎn)的切線,若存在,求出該切線方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3x2+8.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列對(duì)于函數(shù)f(x)=2+2cos2x,x∈(0,3π)的判斷不正確的是( 。
A.對(duì)于任意x∈(0,3π),都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為$\frac{π}{2}$
B.存在a∈R,使得函數(shù)f(x+a)為偶函數(shù)
C.存在x0∈(0,3π),使得f(x0)=4
D.函數(shù)f(x)在區(qū)間$[\frac{π}{2},\frac{5π}{4}]$內(nèi)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cosA=$\frac{4}{5}$,(a-2):b:(c+2)=1:2:3,則△ABC的形狀為( 。
A.等邊三角形B.直角三角形C.鈍角三角形D.銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在正方體ABCD-A1B1C1D1內(nèi)隨機(jī)取點(diǎn),則該點(diǎn)落在三棱錐A1-ABC內(nèi)的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.P是雙曲線C:x2-y2=2左支上一點(diǎn),直線l是雙曲線C的一條漸近線,P在l上的射影為Q,F(xiàn)2是雙曲線C的右焦點(diǎn),則|PF2|+|PQ|的最小值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$3\sqrt{2}$D.$2+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若a>0,b>0,且$\sqrt{a}+\sqrt=1$,則$\frac{1}{a}+\frac{1}$的最小值為,8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知曲線y=2x2上一點(diǎn)A(2,8),則A處的切線斜率為( 。
A.4B.8C.16D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案