已知三棱錐P—ABC中,PC⊥底面ABC,AB=BC,
D、F分別為AC、PC的中點,DE⊥AP于E.
(1)求證:AP⊥平面BDE;
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐
P—ABC所成兩部分的體積比.
(Ⅰ)證明見解析(Ⅱ)證明見解析(Ⅲ)兩部分體積的比為1∶2或2∶1
(1)∵PC⊥底面ABC,BD平面ABC,∴PC⊥BD.
由AB=BC,D為AC的中點,得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC. 又PA平面、PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,∴AP⊥平面BDE.
(2)由BD⊥平面PAC,DE平面PAC,得BD⊥DE.由D、F分別為AC、PC的中點,得DF//AP.
由已知,DE⊥AP,∴DE⊥DF. BD∩DF=D,∴DE⊥平面BDF.
又DE平面BDE,∴平面BDE⊥平面BDF.
(3)設點E和點A到平面PBC的距離分別為h1和h2.則
h1∶h2=EP∶AP=2∶3,
故截面BEF分三棱錐P—ABC所成兩部分體積的比為1∶2或2∶1
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
6 |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com