【題目】下面給出一個問題的算法:
S1 輸入x;
S2 若x≤2,則執(zhí)行S3;否則,執(zhí)行S4;
S3 輸出-2x-1;
S4 輸出x2-6x+3.
問題:
(1)這個算法解決的是什么問題?
(2)當(dāng)輸入的x值為多大時,輸出的數(shù)值最小?
【答案】(1)f(x)=;(2)當(dāng)輸入的x值為3時,輸出的數(shù)值最小.
【解析】試題分析:(1)由S2判斷語句知是求分段函數(shù)的函數(shù)值問題,為f(x)=;(2)由函數(shù)性質(zhì)性質(zhì)可知,當(dāng)輸入的x值為3時,輸出的數(shù)值最小。
試題解析:
(1)由于輸入x的值不同,代入的關(guān)系式不同,從而它是求分段函數(shù)的函數(shù)值問題,這個分段函數(shù)為f(x)=
(2)當(dāng)x≤2時,f(x)≥f(2)=-5;
當(dāng)x>2時,f(x)=x2-6x+3=(x-3)2-6≥-6.
故當(dāng)x=3時,f(x)min=-6.
所以當(dāng)輸入的x值為3時,輸出的數(shù)值最小.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:與拋物線:
(1)若直線與拋物線相切,求實數(shù)的值;
(2)若直線經(jīng)過拋物線的焦點,且與拋物線相交于,兩點,當(dāng)拋物線上一動點從到運動時,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題,其中真命題的個數(shù)是( )
①若“或”是假命題,則“且”是真命題;
②命題“若,則或”為真命題;
③已知空間任意一點和不共線的三點,,,若,則,,,四點共面;
④直線與雙曲線交于,兩點,若,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C: (a>b>0),動直線l與橢圓C只有一個公共點P,且點P在第一象限.
(Ⅰ)已知直線l的斜率為k,用a,b,k表示點P的坐標(biāo);
(Ⅱ)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a﹣b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x,焦點為F,過點P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若 + =18,則k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點,過點作軸的垂線段,為垂足.,當(dāng)點在圓上運動時,
(1)求點的軌跡的方程;
(2) 若,直線交曲線于、兩點(點、與點不重合),且滿足.為坐標(biāo)原點,點滿足,證明直線過定點,并求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F1、F2為雙曲線C:x2﹣ =1的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,∠MF1F2=30°.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某冷飲店的經(jīng)營狀況,隨機(jī)記錄了該店月的月營業(yè)額(單位:萬元)與月份的數(shù)據(jù),如下表:
(1)求關(guān)于的回歸直線方程;
(2)若在這樣本點中任取兩點,求恰有一點在回歸直線上的概率.
附:回歸直線方程中,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的離心率為,且經(jīng)過點,四邊形的四個頂點都在橢圓上,對角線所在直線的斜率為,且,.
(1)求橢圓C的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com