【題目】在圓上任取一點(diǎn)
,過(guò)點(diǎn)
作
軸的垂線段
,
為垂足.
,當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),
(1)求點(diǎn)的軌跡
的方程;
(2) 若,直線
交曲線
于
、
兩點(diǎn)(點(diǎn)
、
與點(diǎn)
不重合),且滿(mǎn)足
.
為坐標(biāo)原點(diǎn),點(diǎn)
滿(mǎn)足
,證明直線
過(guò)定點(diǎn),并求直線
的斜率的取值范圍.
【答案】(1) . (2)
.
【解析】試題分析:
(1)由相關(guān)點(diǎn)法得到M(x0,y0),N(x,y),則x=x0,y=(2)聯(lián)立直線和橢圓得到二次方程,根據(jù)條件結(jié)合韋達(dá)定理得到
,
,
,進(jìn)而求得范圍.
解析:
(1) 設(shè)M(x0,y0),N(x,y),則x=x0,y=y0,代入圓方程有
.
即為N點(diǎn)的軌跡方程.
(2)當(dāng)直線垂直于
軸時(shí),由
消去
整理得
,
解得或
,此時(shí)
,直線
的斜率為
;
當(dāng)直線不垂直于
軸時(shí),設(shè)
,直線
:
(
),
由,消去
整理得
,
依題意,即
(*),
且,
,
又,所以
,
所以,即
,解得
滿(mǎn)足(*),
所以
,故
,
故直線的斜率
,
當(dāng)時(shí),
,此時(shí)
;
當(dāng)時(shí),
,此時(shí)
;
綜上,直線的斜率的取值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)消防安全意識(shí),某中學(xué)對(duì)全體學(xué)生做了一次消防知識(shí)講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計(jì) | 45 | 75 | 120 |
(Ⅰ)試判斷是否有的把握認(rèn)為消防知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);
附:
K2=
(Ⅱ)為了宣傳消防安全知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組,現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+ )+
.
(1)若a>0,且f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,
,函數(shù)
的最小值為
(1)當(dāng)時(shí),求
的值;
(2)求;
(3)已知函數(shù)為定義在R上的增函數(shù),且對(duì)任意的
都滿(mǎn)足
問(wèn):是否存在這樣的實(shí)數(shù)m,使不等式
+
對(duì)所有
恒成立,若存在,求出m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出一個(gè)問(wèn)題的算法:
S1 輸入x;
S2 若x≤2,則執(zhí)行S3;否則,執(zhí)行S4;
S3 輸出-2x-1;
S4 輸出x2-6x+3.
問(wèn)題:
(1)這個(gè)算法解決的是什么問(wèn)題?
(2)當(dāng)輸入的x值為多大時(shí),輸出的數(shù)值最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,左頂點(diǎn)為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條相互垂直的直線分別與橢圓
交于(不同于點(diǎn)
的)
兩點(diǎn).試判斷直線
與
軸的交點(diǎn)是否為定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為
,
為
的中點(diǎn),
為線段
上的動(dòng)點(diǎn),過(guò)點(diǎn)
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫(xiě)出所有正確命題的編號(hào)).
①當(dāng)時(shí),
為四邊形;②當(dāng)
時(shí),
為等腰梯形;
③當(dāng)時(shí),
與
的交點(diǎn)
滿(mǎn)足
;
④當(dāng)時(shí),
為五邊形;
⑤當(dāng)時(shí),
的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2 sin(
),直線C的極坐標(biāo)方程為ρsinθ=1,射線θ=φ,θ=
+φ(φ∈[0,π])與曲線C1分別交異于極點(diǎn)O的兩點(diǎn)A,B.
(I)把曲線C1和C2化成直角坐標(biāo)方程,并求直線C2被曲線C1截得的弦長(zhǎng);
(II)求|OA|2+|OB|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)應(yīng)該為( )
A. 483 B. 482
C. 481 D. 480
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com