一個(gè)幾何體的三視圖如圖所示,主視圖與側(cè)視圖都是邊長(zhǎng)為
2的正三角形,俯視圖為正方形,則該幾何體的全面積為( 。
A、4
B、8
C、12
D、4+4
3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體為正四棱錐,根據(jù)主視圖與側(cè)視圖都是邊長(zhǎng)為2的正三角形可得側(cè)面的斜高為2,底面正方形的邊長(zhǎng)為2,把數(shù)據(jù)代入表面積公式計(jì)算.
解答: 解:由三視圖知:幾何體為正四棱錐,且正四棱錐的底面為邊長(zhǎng)為2的正方形,
∵主視圖與側(cè)視圖都是邊長(zhǎng)為2的正三角形,
∴側(cè)面的斜高為2,
∴幾何體的全面積S=22+4×
1
2
×2×2=4+8=12.
故選:C.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)的相鄰對(duì)稱軸之間距離為
π
2
,點(diǎn)(
π
3
,0)是其圖象的一個(gè)對(duì)稱中心,則下列各式中符合條件的解析式是(  )
A、y=2sin(4x-
π
3
B、y=2sin(4x+
π
6
C、y=2sin(2x+
π
3
D、y=2sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

INPUT a
b=a\10-a/10+aMOD10
PRINT b
END
若a=35,則以上程序運(yùn)行的結(jié)果是(  )
A、4.5B、3C、1.5D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又在其定義域內(nèi)是增函數(shù)的是(  )
A、f(x)=cosx
B、f(x)=sinx+x
C、f(x)=x2+1
D、f(x)=x3-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m<0,角α的終邊經(jīng)過點(diǎn)P(4m,-3m),那么2sinα+cosα的值等于( 。
A、
2
5
B、-
2
5
C、
1
5
D、-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,則
a-1
b
的取值范圍是( 。
A、(-∞,-3)
B、(-
1
3
,0)
C、(3,+∞)
D、(0,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
BA
=(1,2),
CA
=(4,x),且
BA
CA
共線,則
BC
=( 。
A、(-3,-6)
B、(3,6)
C、(5,10)
D、(-3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD所在的平面與平面ABF互相垂直,在△ABF中,AB=
3
,AF=2,BF=1,O、P分別為AC和AF的中點(diǎn).
(1)求證:AB⊥CF;
(2)若四棱錐F-ABCD的體積為1,求直線OP與平面ABF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物,2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 PM2.5(微克/立方米) 頻數(shù)(天) 頻率
第一組 (0,15] 4 0.1
第二組 (15,30] 12 0.3
第三組 (30,45] 8 0.2
第四組 (45,60] 8 0.2
第五組 (60,75] 4 0.1
第六組 (75,90] 4 0.1
(Ⅰ)求該樣本的平均數(shù)的估計(jì)值,并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn),并說明理由;
(Ⅱ)從這40天中,隨機(jī)抽取2天,記這2天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合《環(huán)境空氣質(zhì)量標(biāo)》的天數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

同步練習(xí)冊(cè)答案