設(shè)分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí), ,且,則不等式的解集是( )
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0, 3)
C.(-∞,- 3)∪(3,+∞) D.(-∞,- 3)∪(0, 3)
D
【解析】
試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070312101418264082/SYS201307031210379652548013_DA.files/image001.png">,
即[f(x)g(x)]'>0,故f(x)g(x)在x>0時(shí)遞增,
又∵f(x),g(x)分別是定義R上的奇函數(shù)和偶函數(shù),
∴f(x)g(x)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,f(x)g(x)在x<0時(shí)也是增函數(shù).
∵f(3)g(3)=0,∴f(-3)g(-3)=0
所以f(x)g(x)<0的解集為(-∞,- 3)∪(0, 3)。
考點(diǎn):本題主要考查函數(shù)和的求導(dǎo)法則,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的奇偶性。
點(diǎn)評:小綜合題,在某區(qū)間,函數(shù)的導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),函數(shù)的導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆山西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí),,且,則不等式的解集是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三上學(xué)期第一次診斷性測試文科數(shù)學(xué)卷 題型:選擇題
設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,則不等式<0的解集是( )
A.{x|-3<x<0或x>3} B.{x|x<-3或0<x<3}
C.{x|x<-3或x>3} D.{x|-3<x<0或0<x<3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆河南省高二3月月考理科數(shù)學(xué)試卷 題型:選擇題
設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí),,且,則不等式的解集( )
A、 (-3,0)∪(3,+∞) B、(-3,0)∪(0,3)
C、 (-∞,-3)∪(3,+∞) D、 (-∞,-3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),分別是定義在上的奇函數(shù)和偶函數(shù),已知當(dāng)時(shí),有,且,則不等式在R上的解集為_________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com