設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí),,且,則不等式的解集是( )
A. B.
C. D.
D
【解析】
試題分析:
解:設(shè)F(x)="f" (x)g(x),當(dāng)x<0時(shí),∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在當(dāng)x<0時(shí)為增函數(shù).∵F(-x)="f" (-x)g (-x)="-f" (x)?g (x)=-F(x).故F(x)為(-∞,0)∪(0,+∞)上的奇函數(shù).∴F(x)在(0,∞)上亦為增函數(shù).已知g(-3)=0,必有F(-3)=F(3)=0.構(gòu)造如圖的F(x)的圖象,可知,F(xiàn)(x)<0的解集為x∈(-∞,-3)∪(0,3)故選D
考點(diǎn):復(fù)合函數(shù)的求導(dǎo)運(yùn)算
點(diǎn)評:本題主要考查復(fù)合函數(shù)的求導(dǎo)運(yùn)算和函數(shù)的單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系.導(dǎo)數(shù)是一個(gè)新內(nèi)容,也是高考的熱點(diǎn)問題,要多注意復(fù)習(xí)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二(9、10班)下期中考試數(shù)學(xué)卷(解析版) 題型:選擇題
設(shè)分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí), ,且,則不等式的解集是( )
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0, 3)
C.(-∞,- 3)∪(3,+∞) D.(-∞,- 3)∪(0, 3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三上學(xué)期第一次診斷性測試文科數(shù)學(xué)卷 題型:選擇題
設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,則不等式<0的解集是( )
A.{x|-3<x<0或x>3} B.{x|x<-3或0<x<3}
C.{x|x<-3或x>3} D.{x|-3<x<0或0<x<3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆河南省高二3月月考理科數(shù)學(xué)試卷 題型:選擇題
設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí),,且,則不等式的解集( )
A、 (-3,0)∪(3,+∞) B、(-3,0)∪(0,3)
C、 (-∞,-3)∪(3,+∞) D、 (-∞,-3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),分別是定義在上的奇函數(shù)和偶函數(shù),已知當(dāng)時(shí),有,且,則不等式在R上的解集是_______。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com