命題p:函數(shù)f(x)=x2+2ax+4有零點(diǎn);
命題q:函數(shù)f(x)=(3-2a)x是增函數(shù),
若命題p∧q是真命題,求實(shí)數(shù)a的取值范圍.
考點(diǎn):復(fù)合命題的真假,二次函數(shù)的性質(zhì)
專題:集合
分析:由命題p∧q是真命題,則p是真命題,且q是真命題,由4a2-16≥0⇒a≥2,或a≤-2,由3-2a>1⇒a<1,從而求出a的范圍.
解答: 解:若命題p∧q是真命題,
則p是真命題,且q是真命題,
由“命題p:函數(shù)f(x)=x2+2ax+4有零點(diǎn)”為真;
得:△=4a2-16≥0⇒a≥2,或a≤-2,
由“命題q:函數(shù)f(x)=(3-2a)x是增函數(shù)”為真,
得:3-2a>1⇒a<1,
綜上得:a≤-2.
∴a的范圍是(-∞,-2].
點(diǎn)評(píng):本題考查了復(fù)合命題的判斷,結(jié)合真值表和函數(shù)的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,M、N分別為A1A、D1C1的中點(diǎn),過(guò)D、M、N三點(diǎn)的平面與正方體的下底面A1B1C1D1相交與直線l.
(1)畫(huà)出直線l的位置;
(2)設(shè)l∩A1B1=P,求PB的長(zhǎng);
(3)求A到l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+2bx,g(x)=b+lnx(a∈[-1,2],b∈R,b≠0)
(Ⅰ)求命題A:“函數(shù)f(x)的圖象是開(kāi)口向上的拋物線”為真命題的概率;
(Ⅱ)若a∈Z,b∈{-2,-1,1,2},寫(xiě)出所有的數(shù)對(duì)(a,b).設(shè)函數(shù)φ(x)=
f(x),x≤1
g(x),x>1
,記“?x1,x2∈[1,+∞),x1≠x2,
φ(x1)-φ(x2)
x1-x2
>0”為事件B,求事件B發(fā)生的概率P(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
mx2+2
3x+n
為奇函數(shù),且f(2)=
5
3
,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)都不相等的等差數(shù)列{an}的前五項(xiàng)和為30,且a2是a1和a4的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足bn=
1
Sn
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意實(shí)數(shù)x,y,總有f(xy)-f(x)=f(y)(xy≠0),求證:
(1)f(1)=0;
(2)f(
1
x
)=-f(x);  
(3)f(
x
y
)=f(x)-f(y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為
2
3
,乙獲勝的概率為
1
3
,各局比賽結(jié)果相互獨(dú)立.
(Ⅰ)求甲在3局以內(nèi)(含3局)贏得比賽的概率;
(Ⅱ)記X為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x),周期為4,且x∈(0,2)時(shí),f(x)=
3x
9x+1

(1)求f(x)在[-2,2]上的解析式;
(2)若關(guān)于x的方程f(x)=
2
3x+2a
在x∈(0,2)上有兩個(gè)不等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不小于60度”時(shí),反設(shè)正確的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案