精英家教網 > 高中數學 > 題目詳情
為了解當前國內青少年網癮的狀況,探索青少年網癮的成因,中國青少年網絡協會調查了26個省會城市的青少年上網情況,并在已調查的青少年中隨機挑選了100名青少年的上網時間作參考,得到如下的統計表格.平均每天上網時間超過2個小時可視為“網癮”患者.
時間(單位:小時) [0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,12]
人數 52 23 10 5 4 4 2
(Ⅰ)以該100名青少年來估計中國青少年的上網情況,則在中國隨機挑選3名青少年,求至少有一人是“網癮”患者的概率;
(Ⅱ)以該100名青少年來估計中國青少年的上網情況,則在中國隨機挑選4名青少,記X為“網癮”患者的人數,求X的分布列和數學期望.
考點:離散型隨機變量的期望與方差,互斥事件與對立事件,相互獨立事件的概率乘法公式
專題:計算題,概率與統計
分析:(Ⅰ)利用對立事件的概率公式,即可求至少有一人是“網癮”患者的概率;
(Ⅱ)X的可能取值為0,1,2,3,4,求出相應的概率,可得X的分布列和數學期望.
解答: 解:由題意得,該100名青少年中有25個是“網癮”患者.
(Ⅰ)設Ai(0≤i≤3)表示“所挑選的3名青少年有i個青少年是網癮患者”,“至少有一人是網癮患者”記為事件A,
P(A)=P(A1)+P(A2)+P(A3)=1-P(A0)=1-(
75
100
)3=
37
64
.…(4分)
(Ⅱ)X的可能取值為0,1,2,3,4,則
P(X=0)=(
3
4
)4=
81
256
,P(X=1)=
C
1
4
(
3
4
)3(
1
4
)=
27
64
,P(X=2)=
C
2
4
(
3
4
)2(
1
4
)2=
27
128
,
P(X=3)=
C
3
4
(
3
4
)(
1
4
)3=
3
64
,P(X=4)=
C
4
4
(
1
4
)4=
1
256
.…(10分)
X的分布列為
X 0 1 2 3 4
P
81
256
27
64
27
128
3
64
1
256
E(X)=0×
81
256
+1×
27
64
+2×
27
128
+3×
3
64
+4×
1
256
=1
.…(12分)
點評:本題考查對立事件的概率公式,考查離散型隨機變量的分布列和期望,確定變量的取值,求出相應的概率是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0且a≠1,則ab>1是(a-1)b>0的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

如果復數
2-bi
i
(b∈R)的實部和虛部互為相反數,那么b等于( 。
A、
2
B、-
2
C、-2
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}的前n項和為Sn,且a3=1,S9=45.數列{bn}滿足bn=
an
3n

(Ⅰ)求數列{an}的通項公式an;
(Ⅱ)設數列{bn}的前n項和為Tn,求證:-
10
9
≤Tn≤-1.

查看答案和解析>>

科目:高中數學 來源: 題型:

若對于某個數學問題,甲、乙兩人都在研究,甲解出該題的概率是
2
3
,乙解出該題的概率是為
4
5
,設解出該題的人數為X,求E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c,其中d>c.
(1)已知函數y=|2x-1|的定義域為[a,b],值域為[0,
1
2
],寫出區(qū)間[a,b]長度的最大值與最小值.
(2)已知函數fM(x)的定義域為實數集D=[-2,2],滿足fM(x)=
x,x∈M
-x,x∈M
(M是D的非空真子集).集合A=[1,2],B=[-2,-1],求F(x)=
fA∪B(x)
fA(x)+fB(x)+3
的值域所在區(qū)間長度的總和.
(3)定義函數f(x)=
1
x-1
+
2
x-2
+
3
x-3
+
4
x-4
-1,判斷函數f(x)在區(qū)間(2,3)上是否有零點,并求不等式f(x)>0解集區(qū)間的長度總和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1
ex
(x∈R)
(1)求函數f(x)的單調區(qū)間和極值;
(2)已知函數y=g(x)對任意x滿足g(x)=f(4-x),證明:當x>2時,f(x)>g(x);
(3)如果x1≠x2,且f(x1)=f(x2),證明:x1+x2>4.

查看答案和解析>>

科目:高中數學 來源: 題型:

由于受大氣污染的影響,某工程機械的使用年限x(年)與所支出的維修費用y(萬元)之間,有如下統計資料:
x(年) 2 3 4 5 6
y(萬元) 2.2 3.8 5.5 6.5 7.0
假設y與x之間呈線性相關關系.
(Ⅰ)求維修費用y(萬元)與設備使用年限x(年)之間的線性回歸方程;(精確到0.01)
(Ⅱ)使用年限為8年時,維修費用大概是多少?參考公式:回歸方程
y
=
b
x+
a
,其中
b
=
n
i=1
xiyj-n
.
x
.
y
n
i=i
x
2
1
-n
.
x2
,
a
=
y
-
b
.
x

查看答案和解析>>

科目:高中數學 來源: 題型:

將邊長為2cm的正方體割除若干部分后得一幾何體,其三視圖如圖所示,則該幾何體的體積等于
 
cm3

查看答案和解析>>

同步練習冊答案