如果復(fù)數(shù)
2-bi
i
(b∈R)的實(shí)部和虛部互為相反數(shù),那么b等于( 。
A、
2
B、-
2
C、-2
D、2
考點(diǎn):復(fù)數(shù)的基本概念
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)的代數(shù)形式的除法運(yùn)算化簡(jiǎn),然后由實(shí)部和虛部互為相反數(shù)得答案.
解答: 解:∵
2-bi
i
=
(2-bi)(-i)
-i2
=-b-2i
,
且其實(shí)部和虛部都互為相反數(shù),
∴b=-2.
故選:C.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足對(duì)于x∈[n,m](m>n)時(shí)有
n
k
≤f(x)≤km恒成立,則稱函數(shù)f(x)在區(qū)間[n,m](m>n)上是“被k限制”的,若函數(shù)f(x)=x2-ax+a2在區(qū)間[
1
a
,a](a>0)上是“被2限制”的,則實(shí)數(shù)a的取值范圍是( 。
A、(1,
2
]
B、(1,
3
3
2
]
C、(1,2]
D、[
3
3
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系內(nèi),與點(diǎn)O(0,0)距離為1,且與點(diǎn)B(-3,4)距離為4的直線條數(shù)共有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P={a,b,c},Q={x|x⊆P},則P與Q的關(guān)系是( 。
A、P⊆QB、Q⊆P
C、Q∈PD、P∈Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足x2+y2-1=0,則z=
y-1
x+2
的取值范圍是( 。
A、[-
4
3
,0]
B、[0,
4
3
]
C、[-2,-
2
3
]
D、[-
10
3
,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將4個(gè)不同的小球放入3個(gè)不同的盒中,每個(gè)盒子至少放入一球,則不同方法為( 。
A、81B、36C、64D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的多面體中,ABCD是菱形,ED∥FB,ED⊥面ABCD,AD=BD=2,BF=2DE=2
2

(Ⅰ)求證:AE⊥CF;
(Ⅱ)求二面角A-FC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解當(dāng)前國(guó)內(nèi)青少年網(wǎng)癮的狀況,探索青少年網(wǎng)癮的成因,中國(guó)青少年網(wǎng)絡(luò)協(xié)會(huì)調(diào)查了26個(gè)省會(huì)城市的青少年上網(wǎng)情況,并在已調(diào)查的青少年中隨機(jī)挑選了100名青少年的上網(wǎng)時(shí)間作參考,得到如下的統(tǒng)計(jì)表格.平均每天上網(wǎng)時(shí)間超過(guò)2個(gè)小時(shí)可視為“網(wǎng)癮”患者.
時(shí)間(單位:小時(shí)) [0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,12]
人數(shù) 52 23 10 5 4 4 2
(Ⅰ)以該100名青少年來(lái)估計(jì)中國(guó)青少年的上網(wǎng)情況,則在中國(guó)隨機(jī)挑選3名青少年,求至少有一人是“網(wǎng)癮”患者的概率;
(Ⅱ)以該100名青少年來(lái)估計(jì)中國(guó)青少年的上網(wǎng)情況,則在中國(guó)隨機(jī)挑選4名青少,記X為“網(wǎng)癮”患者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程sinx=sin2x的解集是:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案