A. | $({0,\frac{π}{3}}]$ | B. | $({0,\frac{π}{3}})$ | C. | $({0,\frac{π}{6}}]$ | D. | $({0,\frac{π}{6}})$ |
分析 由已知及基本不等式可求c2≥ab,由余弦定理可得cosC≥$\frac{1}{2}$,結合范圍C∈(0,π),可求C的取值范圍.
解答 解:∵a2+b2=2c2≥2ab,(當且僅當a=b時等號成立),即c2≥ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{c}^{2}}{2ab}$≥$\frac{{c}^{2}}{2{c}^{2}}$=$\frac{1}{2}$,(當且僅當a=b時等號成立),
∵C∈(0,π),
∴C∈(0,$\frac{π}{3}$].
故選:A.
點評 本題主要考查了基本不等式,余弦定理在解三角形中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({3+2\sqrt{2},+∞})$ | B. | $[{3+2\sqrt{2},+∞})$ | C. | (6,+∞) | D. | [6,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
超市 | A | B | C | D | E | F | G |
廣告費支出xi | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額yi | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com