求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:(1)經(jīng)過點(,-1);(2)在y軸上的截距是-5.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的焦點在軸上
(Ⅰ)若橢圓的焦距為1,求橢圓的方程;
(Ⅱ)設(shè)分別是橢圓的左、右焦點,為橢圓上第一象限內(nèi)的點,直線交軸與點,并且,證明:當(dāng)變化時,點在某定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線:上橫坐標(biāo)為4的點到焦點的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標(biāo).
(Ⅲ)試把問題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請寫出結(jié)論,不用證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點時,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的左頂點為,是橢圓上異于點的任意一點,點與點關(guān)于點對稱.
(1)若點的坐標(biāo)為,求的值;
(2)若橢圓上存在點,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,直線,為平面上的動點,過點作的垂線,垂足為點,且.
(1)求動點的軌跡曲線的方程;
(2)設(shè)動直線與曲線相切于點,且與直線相交于點,試探究:在坐標(biāo)平面內(nèi)是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是橢圓的左焦點,直線方程為,直線與軸交于點,、分別為橢圓的左右頂點,已知,且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率等于,點在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左右頂點分別為,,過點的動直線與橢圓相交于,兩點,是否存在定直線:,使得與的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com