(本小題14分)已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為點(diǎn),且.
(1)求動(dòng)點(diǎn)的軌跡的方程;          
(2)軌跡上是否存在一點(diǎn)使得過(guò)的切線與直線平行?若存在,求出的方程,并求出它與的距離;若不存在,請(qǐng)說(shuō)明理由.      
19.解:(1)設(shè)點(diǎn),則,

  得 
整理得                                           …………………5分
(2)假設(shè)軌跡上存在一點(diǎn)使得過(guò)的切線與直線平行.
 得,所以,                     …………………7分
由假設(shè)可知,直線的斜率                   …………………8分
又直線的斜率等于1,故,即,               …………………9分
代入   得                                 …………………10分
因此點(diǎn)的坐標(biāo)為,直線的方程為          …………………12分
直線與直線的距離.         …………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且

(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知?jiǎng)訄A過(guò)定點(diǎn),且與定直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)若是軌跡的動(dòng)弦,且過(guò), 分別以、為切點(diǎn)作軌跡的切線,設(shè)兩切線交點(diǎn)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,設(shè)是橢圓的左焦點(diǎn),直線為對(duì)應(yīng)的準(zhǔn)線,直線軸交于點(diǎn),為橢圓的長(zhǎng)軸,已知,且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:對(duì)于任意的割線,恒有
(3)求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓C的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為,焦點(diǎn)坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0),O是坐標(biāo)原點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A(-3,0),B(3,0)P是橢圓C上異于A、B的任意一點(diǎn),直線AP、BP分別交于y軸于M、N兩點(diǎn),求的值;
(3)在(2)的條件下,若G(s,o)、H(k,o)且,(s<k),分別以線段OG、OH為邊作兩個(gè)正方形,求這兩上正方形的面積和的最小值,并求出取得最小值時(shí)G、H兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓和雙曲線的公共點(diǎn)為是兩曲線的一個(gè)交點(diǎn), 那么的值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線與拋物線,當(dāng)直線開始在平面上繞點(diǎn)按逆時(shí)針?lè)较騽蛩傩D(zhuǎn)(旋轉(zhuǎn)的角度不超過(guò))時(shí),它掃過(guò)的面積是時(shí)間的函數(shù),則函數(shù)圖象大致是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線y=2與曲線有兩個(gè)交點(diǎn),則的取值范圍是               

查看答案和解析>>

同步練習(xí)冊(cè)答案