12.在等差數(shù)列{an}中,a5+a9=12,a3=2,則a11=( 。
A.12B.11C.10D.9

分析 根據(jù)題意和等差數(shù)列的性質(zhì)列出方程,求出a11的值.

解答 解:∵在等差數(shù)列{an}中,a5+a9=12,a3=2,
∴由等差數(shù)列的性質(zhì)得a5+a9=a3+a11=12,
解得a11=10,
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.解方程|x-1|+|3-x|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知R為全集,A={x|log${\;}_{\frac{1}{2}}$(3-x)≥-2},B={x|$\frac{5}{x+2}$≥1}.求:
(1)A∩B;
(2)(∁RA)∩B與(∁RA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列概率模型中,是古典概型的個(gè)數(shù)為( 。
(1)從區(qū)間[1,10]內(nèi)任取一個(gè)數(shù),求取到1的概率;
(2)從1-10中任意取一個(gè)整數(shù),求取到1的概率;
(3)在一個(gè)正方形ABCD內(nèi)畫(huà)一點(diǎn)P,求P剛好與點(diǎn)A重合的概率;
(4)向上拋擲一枚不均勻的硬幣,求出現(xiàn)反面朝上的概率.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,點(diǎn)P為等腰直角△ABC內(nèi)部(不含邊界)一點(diǎn),AB=BC=AP=1,過(guò)點(diǎn)P作PQ∥AB,交AC于點(diǎn)Q.記∠PAB=θ,△APQ面積為S(θ).
(1)求S(θ)關(guān)于θ的函數(shù);
(2)求S(θ)的最大值,并求出相應(yīng)的θ值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|x>1},B={x|x2-x-2<0},則A∩B=( 。
A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A={x|x2+px+q=0},B={x|x2+(p-1)x-q+5=0}滿足A∩B={1},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x-axlnx,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)$g(x)=\frac{f(x)}{lnx}$,若函數(shù)g(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)在區(qū)間[e,e2]上,若存在x0,使得g(x0)≤g′(x)max+a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x3+2f′(1)x2+1,g(x)=x2-ax(a∈R)
(Ⅰ)求f'(l)的值和f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x1∈[-1,1]都存在x2∈(0,2),使得f(x1)≥g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案