8.若sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),則sin($\frac{π}{2}$+α)=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{3}$

分析 由已知利用誘導(dǎo)公式可求sinα,利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式化簡所求即可得解.

解答 解:∵sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),
∴sinα=-$\frac{{\sqrt{3}}}{3}$,
∴sin($\frac{π}{2}$+α)=cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{6}}{3}$.
故選:A.

點評 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.(x-$\frac{1}{x}$)6的展開式中,系數(shù)最大的項為第第三、第五項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)等差數(shù)列{an}滿足a1=-11,a4+a6=-6,
(1)求{an}的通項公式an;
(2)設(shè){an}的前n項和為Sn,求滿足sk=189成立的k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.化簡 $\overrightarrow{AC}-\overrightarrow{BD}+\overrightarrow{CD}-\overrightarrow{AB}$=( 。
A.$\overrightarrow{AB}$B.$\overrightarrow{BC}$C.$\overrightarrow{DA}$D.$\overrightarrow 0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊過點P(-5,12),則sinα+cosα=( 。
A.$\frac{4}{13}$B.$-\frac{4}{13}$C.$\frac{7}{13}$D.$-\frac{7}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以坐標(biāo)原點O為極點,以x軸正半軸為極軸)中,圓C的圓心在射線$θ=\frac{π}{4}$上,且與直線$ρ=-\frac{1}{sinθ}$相切于點$(\sqrt{2},\frac{7π}{4})$.
(1)求圓C的極坐標(biāo)方程;
(2)若$α∈[0,\frac{π}{4})$,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t為參數(shù)),直線l交圓C于A,B兩點,求弦長|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=sinωx+\sqrt{3}cosωx$ (ω>0)的圖象與直線y=-2的兩個相鄰公共點之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是( 。
A.$[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$B.$[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$
C.$[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$D.$[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.研究某校女學(xué)生身高和體重的關(guān)系,用相關(guān)指數(shù)R2來刻畫回歸效果時,如果可以敘述為“身高解釋了64%的體重變化,而隨機(jī)誤差貢獻(xiàn)了剩余的36%,所以身高對體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多”,則相關(guān)指數(shù)R2≈0.64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知空間四邊形ABCD,鏈接AC,BD,則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$為( 。
A.$\overrightarrow{AD}$B.$\overrightarrow{BD}$C.$\overrightarrow{AC}$D.$\overrightarrow{0}$

查看答案和解析>>

同步練習(xí)冊答案