7.如圖,已知直三棱柱ABC-A1B1C1的側(cè)面ACC1A1是正方形,AC=BC,點O是側(cè)面ACC1A1的中心,∠ACB=$\frac{π}{2}$,M在棱BC上,且MC=2BM=2.
(1)證明BC⊥AC1
(2)求OM的長度.

分析 (1)推導(dǎo)出CC1⊥BC,BC⊥AC,從而BC⊥面ACC1A1,進而BC⊥AC1
(2)由(1)可知BC⊥OC,利用勾股定理求OM的長度.

解答 證明:(1)因為ABC-A1B1C1是直三棱柱,
所以CC1⊥底面ABC,
所以CC1⊥BC,
又∠ACB=$\frac{π}{2}$,即BC⊥AC,
而CC1,AC?面ACC1A1,且CC1∩AC=C,
所以BC⊥面ACC1A1,
而AC1?面ACC1A1
所以BC⊥AC1;
解:(2)由(1)可知BC⊥OC,
因為MC=2,OC=$\frac{{3\sqrt{2}}}{2}$,
所以O(shè)M=$\sqrt{4+\frac{18}{4}}$=$\frac{\sqrt{34}}{2}$.

點評 本題考查線面垂直的判定,考查勾股定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示,求:
(Ⅰ)x0的值;
(Ⅱ)a,b,c 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy系中,已知直線l:2x+y+4=0,圓C:x2+y2+2x-2by+1=0(b為正實數(shù))
(1)若直線l與圓C交于A,B兩點,且AB=$\frac{4\sqrt{5}}{5}$,求圓C的方程;
(2)作直線CD垂直于直線l,垂足為D,以D為圓心,以DC為半徑作圓D,記圓C的周長為l(b),圓C與圓D的面積之和g(b),設(shè)f(b)=$\frac{g(b)}{l(b)}$,求函數(shù)f(b)的最小值及對應(yīng)的b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),在以原點為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為:ρ=2cosθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若P(2,0),直線l與曲線C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=xex-ae2x(a∈R)
(I)當(dāng)a≥$\frac{1}{e}$時,求證:f(x)≤0.
(II)若函數(shù)f(x)有兩個極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.點P(x,y)在三角形ABC的邊界和內(nèi)部運動,其中A(1,0),B(2,1),C(4,4),已知m>0,n>0.
(1)求z=2x-y的最小值M和最大值N;
(2)若m+n=M,求$\frac{4}{m}$+$\frac{9}{n}$的最小值,并求此時的m,n的值;
(3)若m+n+mn=N,求mn的最大值和m+n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=|x|-ax-1僅有一個負(fù)零點,則a的取值范圍是( 。
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-ax+1,x∈R.
(1)若f(x)≥0恒成立,求a的取值范圍;
(2)當(dāng)a∈(0,3),求函數(shù)y=f(x)在x∈[1,2]上的最大值;
(3)任意x1,x2∈[1,2],使得|f(x1)-f(x2)|≤4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù))與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))相交于不同的兩點A,B.
(1)若α=$\frac{π}{3}$,求線段AB的長度;
(2)若直線的斜率為$\frac{\sqrt{5}}{4}$,且有已知點P(2,$\sqrt{3}$),求證:|PA|•|PB|=|OP|2

查看答案和解析>>

同步練習(xí)冊答案