【題目】已知函數(shù)有且僅有三個零點,并且這三個零點構(gòu)成等差數(shù)列,則實數(shù)a的值為_______

【答案】

【解析】

利用函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為兩個函數(shù)交點問題,結(jié)合分段函數(shù)的性質(zhì)進行轉(zhuǎn)化求解即可.

函數(shù)0,

得|x+a|a=3,

設(shè)gx)=|x+a|a,hx)=3,

則函數(shù)gx

不妨設(shè)fx)=0的3個根為x1,x2,x3,且x1x2x3,

x>﹣a時,由fx)=0,得gx)=3,即x3,

x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,

解得x=﹣1,或x=4;

若 ①﹣a≤﹣1,即a≥1,此時 x2=﹣1,x3=4,由等差數(shù)列的性質(zhì)可得x1=﹣6,

f(﹣6)=0,即g(﹣6)=3得62a=3,解得a,滿足fx)=0在(﹣∞,﹣a]上有一解.

若②﹣1<﹣a≤4,即﹣4≤a<1,則fx)=0在(﹣∞,﹣a]上有兩個不同的解,不妨設(shè)x1,x2,其中x3=4,

所以有x1,x2是﹣x2a=3的兩個解,即x1,x2x2+(2a+3)x+4=0的兩個解.

得到x1+x2=﹣(2a+3),x1x2=4,

又由設(shè)fx)=0的3個根為x1x2,x3成差數(shù)列,且x1x2x3,得到2x2x1+4,

解得:a=﹣1(舍去)或a=﹣1

③﹣a>4,即a<﹣4時,fx)=0最多只有兩個解,不滿足題意;

綜上所述,a或﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機抽取的100個產(chǎn)品進行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評分的中位數(shù);

2)用樣本估計總體,視頻率作為概率,在該條生產(chǎn)線中隨機抽取3個產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科.山東省采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為150分.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(63),每門科目滿分均為100分.為了應(yīng)對新高考,某高中從高一年級1100名學(xué)生(其中男生600人,女生500人)中,采用分層抽樣的方法從中抽取n名學(xué)生進行調(diào)查,其中女生抽取50人.

1)求n的值;

2)學(xué)校計劃在高一上學(xué)期開設(shè)選修中的物理地理兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對抽取到的n名學(xué)生進行問卷調(diào)查(假定每名學(xué)生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的一個不完整的2×2列聯(lián)表,請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為選擇科目與性別有關(guān)?說明你的理由;

選擇物理

選擇地理

總計

男生

10

女生

30

合計

3)按(2)中選物理的男生女生的比例進行分層抽樣,從選物理的學(xué)生中抽出8名學(xué)生,再從這8名學(xué)生中抽取3人組成物理興趣小組,設(shè)這3人中女生的人數(shù)為X,求X的概率分布列及數(shù)學(xué)期望.

005

001

0005

0001

3841

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓M:(ab>0)的離心率為,左右頂點分別為A,B,線段AB的長為4.P在橢圓M上且位于第一象限,過點A,B分別作l1⊥PA,l2⊥PB,直線l1,l2交于點C.

(1)若點C的橫坐標為﹣1,求P點的坐標;

(2)直線l1與橢圓M的另一交點為Q,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:

年齡段

人數(shù)(單位:人)

180

180

160

80

約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認為年齡層與熱衷關(guān)心民生大事有關(guān)?

熱衷關(guān)心民生大事

不熱衷關(guān)心民生大事

總計

青年

12

中年

5

總計

30

(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]:在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線,的直角坐標方程;

(2)判斷曲線是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于的點

(1)證明:平面平面;

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

同步練習(xí)冊答案