【題目】為提高產品質量,某企業(yè)質量管理部門經常不定期地對產品進行抽查檢測,現(xiàn)對某條生產線上隨機抽取的100個產品進行相關數(shù)據(jù)的對比,并對每個產品進行綜合評分(滿分100分),將每個產品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,視頻率作為概率,在該條生產線中隨機抽取3個產品,求所抽取的產品中一等品數(shù)的分布列和數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,是橢圓上的點,且的面積為。
(1)求橢圓的方程;
(2)若斜率為且在軸上的截距為的直線與橢圓相交于兩點,若橢圓上存在點,滿足,其中是坐標原點,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出對農村要堅持精準扶貧,至 2020 年底全面脫貧. 現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作. 經摸底排查,該村現(xiàn)有貧困農戶 100 家,他們均從事水果種植, 2017 年底該村平均每戶年純收入為 1 萬元,扶貧工作組一方面請有關專家對水果進行品種改良,提高產量;另一方面,抽出部分農戶從事水果包裝、銷售工作,其人數(shù)必須小于種植的人數(shù). 從 2018 年初開始,若該村抽出 5x 戶( x ∈Z,1 ≤x ≤ 9) 從事水果包裝、銷售.經測算,剩下從事水果種植農戶的年純收入每戶平均比上一年提高,而從事包裝銷售農戶的年純收入每戶平均為 (3-x) 萬元(參考數(shù)據(jù): 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).
(1) 至 2020 年底,為使從事水果種植農戶能實現(xiàn)脫貧(每戶年均純收入不低于 1 萬 6 千元),至少抽出多少戶從事包裝、銷售工作?
(2) 至 2018 年底,該村每戶年均純收人能否達到 1.35 萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數(shù)學成績及格的50名學生中有40人比較細心,另外10人比較粗心;在數(shù)學成績不及格的50名學生中有20人比較細心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:
數(shù)學成績及格 | 數(shù)學成績不及格 | 合計 | |
比較細心 | 40 | ||
比較粗心 | |||
合計 | 50 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關系?
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某公園內有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長度;
(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(),當為何值時,該計劃所需總費用最小?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為,是橢圓上一點,記直線的斜率為、,且有.
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于不同兩點和,且滿足(為坐標原點),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com