【題目】為提高產品質量,某企業(yè)質量管理部門經常不定期地對產品進行抽查檢測,現(xiàn)對某條生產線上隨機抽取的100個產品進行相關數(shù)據(jù)的對比,并對每個產品進行綜合評分(滿分100分),將每個產品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產品為一等品.

1)求圖中的值,并求綜合評分的中位數(shù);

2)用樣本估計總體,視頻率作為概率,在該條生產線中隨機抽取3個產品,求所抽取的產品中一等品數(shù)的分布列和數(shù)學期望.

【答案】1,82.5;(2)分布列見解析,.

【解析】

1)由頻率分布直方圖的性質,即可解得的值,再利用中位數(shù)的計算,求得綜合評分的中位數(shù);

2)由(1)與頻率分布直方圖可知,一等品的頻率為,得出所抽取的產品為一等品的

1)由頻率分布直方圖的性質,可得

解得.

令中位數(shù)為x,則,

解得,所以綜合評分的中位數(shù)為82.5.

2)由(1)與頻率分布直方圖可知,一等品的頻率為

即概率為0.6,

設所抽取的產品為一等品的個數(shù)為X,則

所以,,

,.

所以X的分布列為

X

0

1

2

3

P

所抽取的產品為一等品的數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,是橢圓上的點,且的面積為。

(1)求橢圓的方程;

(2)若斜率為且在軸上的截距為的直線與橢圓相交于兩點,若橢圓上存在點,滿足,其中是坐標原點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大提出對農村要堅持精準扶貧,至 2020 年底全面脫貧. 現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作. 經摸底排查,該村現(xiàn)有貧困農戶 100 家,他們均從事水果種植, 2017 年底該村平均每戶年純收入為 1 萬元,扶貧工作組一方面請有關專家對水果進行品種改良,提高產量;另一方面,抽出部分農戶從事水果包裝、銷售工作,其人數(shù)必須小于種植的人數(shù). 從 2018 年初開始,若該村抽出 5x 戶( x ∈Z,1 ≤x ≤ 9) 從事水果包裝、銷售.經測算,剩下從事水果種植農戶的年純收入每戶平均比上一年提高,而從事包裝銷售農戶的年純收入每戶平均為 (3-x) 萬元(參考數(shù)據(jù): 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).

(1) 至 2020 年底,為使從事水果種植農戶能實現(xiàn)脫貧(每戶年均純收入不低于 1 萬 6 千元),至少抽出多少戶從事包裝、銷售工作?

(2) 至 2018 年底,該村每戶年均純收人能否達到 1.35 萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數(shù)學成績及格的50名學生中有40人比較細心,另外10人比較粗心;在數(shù)學成績不及格的50名學生中有20人比較細心,另外30人比較粗心.

1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:

數(shù)學成績及格

數(shù)學成績不及格

合計

比較細心

40

比較粗心

合計

50

100

2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公園內有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設),當為何值時,該計劃所需總費用最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為是橢圓上一點,記直線的斜率為、,且有.

1)求橢圓的方程;

2)若過點的直線與橢圓相交于不同兩點,且滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標方程;

(2)已知點的極坐標為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有且僅有三個零點,并且這三個零點構成等差數(shù)列,則實數(shù)a的值為_______

查看答案和解析>>

同步練習冊答案