7.設(shè)f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{3π}{2}+θ)+cos(-θ)}$,求f($\frac{2π}{3}$)的值.

分析 利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)原式,然后將$\frac{2π}{3}$代入并用特殊三角函數(shù)值求出答案.

解答 解:f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{3π}{2}+θ)+cos(-θ)}$=$\frac{2co{s}^{3}θ+si{n}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$
=$\frac{2co{s}^{3}θ+1-co{s}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$=$\frac{2(cosθ-1)(co{s}^{2}θ+cosθ+1)-cosθ(cosθ-1)}{2+2co{s}^{2}θ+cosθ}$
=$\frac{(cosθ-1)(2co{s}^{2}θ+2cosθ-cosθ+2)}{1+2co{s}^{2}θ+cosθ}$=cosθ-1,
∵cos($\frac{2π}{3}$)=$-\frac{1}{2}$,
∴f($\frac{2π}{3}$)=$-\frac{1}{2}-1=-\frac{3}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的誘導(dǎo)公式,考查了三角函數(shù)的值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題錯(cuò)誤的是(  )
A.在回歸分析模型中,殘差平方和越大,說(shuō)明模型的擬合效果越好
B.線性相關(guān)系數(shù)|r|越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱
C.由變量x和y的數(shù)據(jù)得到其回歸直線方程l:$\widehat{y}$=$\widehat$x+a,則l一定經(jīng)過(guò)P($\overline{x}$,$\overline{y}$)
D.在回歸直線方程$\widehat{y}$=0.1x+1中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\widehat{y}$增加0.1個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x=1時(shí),f(x)取極小值-2.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)解關(guān)于x的不等式f(x)>5mx2-(4m2+3)x(m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.有一橢圓形溜冰場(chǎng),長(zhǎng)軸長(zhǎng)100m,短軸長(zhǎng)60m.現(xiàn)要在這溜冰場(chǎng)上劃定一個(gè)各頂點(diǎn)都在溜冰場(chǎng)邊界上的矩形區(qū)域,且使這個(gè)區(qū)域的面積最大,應(yīng)把這個(gè)矩形的頂點(diǎn)定位在何處?這時(shí)矩形的周長(zhǎng)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(a,b)=ax+by,如果1≤f(1,1)≤2,且-1≤f(1,-1)≤1,試求f(2,1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義在R上的函數(shù)f(x)滿足:$\frac{f'(x)-f(x)}{e^x}=x$,且f(0)=$\frac{1}{2}$,則$\frac{f(x)}{{|x|•{e^x}}}$的最小值為( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.對(duì)于無(wú)窮數(shù)列{an},{bn},若bi=max{a1,a2,…,ai}-min{a1,a2,…,ak}(k=1,2,3,…),則稱{bn}是{an}的“收縮數(shù)列”,其中max{a1,a2,…,ak},min{a1,a2,…,ak}分別表示a1,a2,…,ak中的最大數(shù)和最小數(shù).
已知{an}為無(wú)窮數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}是{an}的“收縮數(shù)列”.
(1)若an=2n+1,求{bn}的前n項(xiàng)和;
(2)證明:{bn}的“收縮數(shù)列”仍是{bn};
(3)若S1+S2+…+Sn=$\frac{n(n+1)}{2}{a}_{1}+\frac{n(n-1)}{2}_{n}$(n=1,2,3,…),求所有滿足該條件的{an}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點(diǎn),且頂點(diǎn)C在y軸上,求BC邊所在直線方程;
(2)若等腰△ABC的底邊為BC,且C為直線l:y=2x+3上一點(diǎn),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若x,y滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥2\end{array}\right.$,則z=2x-y的最小值為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案