【題目】在△ABC中,點(diǎn)D是邊BC上的一點(diǎn)且滿(mǎn)足BDsinB=CDsinC,DC=2BD=2.
(1)求的值.
(2)若AD=2,求△ABC的面積.
【答案】(1)(2).
【解析】
根據(jù)題意可知,,在△ABC中利用正弦定理即可求解;
在中和中,利用余弦定理的推論求出和,再由求出,在中,由余弦定理的推論求出,進(jìn)而求得,代入三角形的面積公式求解即可.
(1)∵BDsinB=CDsinC,且DC=2BD,
∴,
∴在△ABC中由正弦定理得,;
(2)如圖,DC=2BD=2,AD=2,AC=2AB,
在中,由余弦定理的推論可得,
,
在中,由余弦定理的推論可得,
,
因?yàn)?/span>cos∠ADB=﹣cos∠ADC,
∴6﹣AB2=﹣(6﹣2AB2),解得AB=2,AC=4,
在中,由余弦定理的推論可得,
∴,∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線(xiàn)與曲線(xiàn)交于不同的兩點(diǎn)、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在,上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在處的切線(xiàn)平行于軸,是否存在整數(shù),使不等式在時(shí)恒成立?若存在,求出的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱錐中,是的中點(diǎn),且,底面邊長(zhǎng),則正三棱錐的外接球的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn):,(t為參數(shù)),曲線(xiàn):,(為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系;當(dāng)時(shí),求與的交點(diǎn)的極坐標(biāo)(其中極徑,極角);
(2)過(guò)坐標(biāo)原點(diǎn)O作的垂線(xiàn),垂足為A,P為OA中點(diǎn),當(dāng)變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)l的參數(shù)方程為(t為參數(shù),0<α<π),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立及坐標(biāo)系,曲線(xiàn)C:ρsin2θ=4cosθ.
(1)求l和C的直角坐標(biāo)方程;
(2)若l與C相交于A,B兩點(diǎn),且|AB|,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)說(shuō),在今后的三天中,每一天下雨的概率為,用隨機(jī)模擬的方法估計(jì)這三天中恰有兩天下雨的概率.可利用計(jì)算機(jī)產(chǎn)生0到9之間的整數(shù)值的隨機(jī)數(shù),如果我們用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,順次產(chǎn)生的隨機(jī)數(shù)如下:
90 79 66 19 19 25 27 19 32 81 24 58 56 96 83
43 12 57 39 30 27 55 64 88 73 01 13 13 79 89
,這三天中恰有兩天下雨的概率約為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購(gòu)作為一種新的消費(fèi)方式,因其具有快捷、商品種類(lèi)齊全、性?xún)r(jià)比高等優(yōu)勢(shì)而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購(gòu)公司統(tǒng)計(jì)了近五年在本公司網(wǎng)購(gòu)的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類(lèi)推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬(wàn)人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程,并預(yù)測(cè)到哪一年該公司的網(wǎng)購(gòu)人數(shù)能超過(guò)300萬(wàn)人;
(2)該公司為了吸引網(wǎng)購(gòu)者,特別推出“玩網(wǎng)絡(luò)游戲,送免費(fèi)購(gòu)物券”活動(dòng),網(wǎng)購(gòu)者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn). 若遙控車(chē)最終停在“勝利大本營(yíng)”,則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券500元;若遙控車(chē)最終停在“失敗大本營(yíng)”,則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車(chē)開(kāi)始在第0格,網(wǎng)購(gòu)者每拋擲一次骰子,遙控車(chē)向前移動(dòng)一次.若擲出奇數(shù),遙控車(chē)向前移動(dòng)一格(從到)若擲出偶數(shù)遙控車(chē)向前移動(dòng)兩格(從到),直到遙控車(chē)移到第19格勝利大本營(yíng))或第20格(失敗大本營(yíng))時(shí),游戲結(jié)束。設(shè)遙控車(chē)移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購(gòu)者參與游戲一次獲得免費(fèi)購(gòu)物券金額的期望值.
附:在線(xiàn)性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)與
橢圓的一個(gè)交點(diǎn)為,點(diǎn)
是的焦點(diǎn),且.
(1)求與的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),在第一象限內(nèi),橢圓上是否存在點(diǎn),使過(guò)作的垂線(xiàn)交拋物線(xiàn)于,直線(xiàn)交軸于,且?若存在,求出點(diǎn)的坐標(biāo)和的面積;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com