已知函數(shù).
(Ⅰ)若,且對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù),求證:
(Ⅰ)(Ⅱ)詳見(jiàn)解析
解析試題分析:(Ⅰ)是偶函數(shù),只需研究對(duì)任意成立即可,即當(dāng)時(shí)
(Ⅱ)觀察結(jié)論,要證,即證,變形可得
,
可證.問(wèn)題得以解決.
試題解析:(Ⅰ)由可知是偶函數(shù).
于是對(duì)任意成立等價(jià)于對(duì)任意成立. (1分)
由得.
①當(dāng)時(shí),.
此時(shí)在上單調(diào)遞增. 故,符合題意. (3分)
②當(dāng)時(shí),.
當(dāng)變化時(shí)的變化情況如下表: (4分)
由此可得,在上,.單調(diào)遞減 極小值 單調(diào)遞增
依題意,,又.
綜合①,②得,實(shí)數(shù)的取值范圍是. (7分)
(Ⅱ),
又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)當(dāng)時(shí),過(guò)坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求實(shí)數(shù)的值;
(3)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問(wèn)函數(shù)是否存在“轉(zhuǎn)點(diǎn)”.若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),的圖象在點(diǎn)處的切線平行于直線,求的值;
(2)當(dāng)時(shí),在點(diǎn)處有極值,為坐標(biāo)原點(diǎn),若三點(diǎn)共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過(guò)80,已知貨車每小時(shí)的運(yùn)輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運(yùn)輸成本y(元)表示為速度v()的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中,為正整數(shù),、、均為常數(shù),曲線在處的切線方程為.
(1)求、、的值;
(2)求函數(shù)的最大值;
(3)證明:對(duì)任意的都有.(為自然對(duì)數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中.
(Ⅰ)若,求的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),曲線通過(guò)點(diǎn)(0,2a+3),且在處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當(dāng)bc取得最大值時(shí),寫(xiě)出的解析式;
(III)在(II)的條件下,若函數(shù)g(x)為偶函數(shù),且當(dāng)時(shí),,求當(dāng)時(shí)g(x)的表達(dá)式,并求函數(shù)g(x)在R上的最小值及相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(,)。
⑴若,求在上的最大值和最小值;
⑵若對(duì)任意,都有,求的取值范圍;
⑶若在上的最大值為,求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com