(本小題滿分12分)設(shè)直線與橢圓相交于兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),記為坐標(biāo)原點(diǎn).
(1)證明:
(2)若的面積及橢圓方程.

(1)根據(jù)直線與橢圓聯(lián)立,結(jié)合判別式大于零來得到關(guān)系式。
(2)

解析試題分析:(1)證明:由 代入消去
  ① ………………………… 2分
由直線l與橢圓相交于兩個(gè)不同的點(diǎn)得
整理得,即 ……4分
(2)解:設(shè)①為

而點(diǎn), ∴
代入上式,得 ……………7分
于是,△OAB的面積 --------10分
代入,可解出
∴△OAB的面積為橢圓方程是……………12分
考點(diǎn):本試題考查了直線與橢圓的位置關(guān)系的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是通過聯(lián)立方程組,得到二次方程中判別式大于零,得到證明。同時(shí)要結(jié)合向量的坐標(biāo)關(guān)系,以及根與系數(shù)的關(guān)系,解得坐標(biāo),求解面積和橢圓方程。屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,以軸為始邊作兩個(gè)銳角,它們的終邊分別交單位圓于兩點(diǎn).已知兩點(diǎn)的橫坐標(biāo)分別是,

(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.  
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過作與軸垂直的直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),且
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足
為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個(gè)焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請(qǐng)說明有幾個(gè)、并求出直角邊所在直線方程?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案