(本題滿分12分)
雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過(guò)右焦點(diǎn)垂直于的直線分別交于兩點(diǎn).已知成等差數(shù)列,且與同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程.
(Ⅰ)e==;(Ⅱ)。
解析試題分析:(Ⅰ)設(shè),,
由勾股定理可得:
得:,,
由倍角公式,解得,則離心率.
(Ⅱ)過(guò)直線方程為,與雙曲線方程聯(lián)立
將,代入,
化簡(jiǎn)有
將數(shù)值代入,有,解得
故所求的雙曲線方程為.
解法二:解:(Ⅰ)設(shè)雙曲線方程為(a>0,b>0),右焦點(diǎn)為F(c,0)(c>0),則c2=a2+b2
不妨設(shè)l1:bx-ay=0,l2:bx+ay=0
則 ,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/20/1/18i044.png" style="vertical-align:middle;" />2+2=2,且=2-,
所以2+2=(2-)2,
于是得tan∠AOB=。
又與同向,故∠AOF=∠AOB,
所以
解得 tan∠AOF=,或tan∠AOF=-2(舍去)。
因此
所以雙曲線的離心率e==
(Ⅱ)由a=2b知,雙曲線的方程可化為
x2-4y2=4b2 ①
由l1的斜率為,c=b知,直線AB的方程為
y=-2(x-b) ②
將②代入①并化簡(jiǎn),得
15x2-32bx+84b2=0
設(shè)AB與雙曲線的兩交點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則
x1+x2=,x1·x2= ③
AB被雙曲線所截得的線段長(zhǎng)
l= ④
將③代入④,并化簡(jiǎn)得l=,而由已知l=4,故b=3,a=6
所以雙曲線的方程為
考點(diǎn):本題主要考查雙曲線的幾何性質(zhì),直線與雙曲線的位置關(guān)系,兩角和的正切公式。
點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往要利用韋達(dá)定理。弦長(zhǎng)問(wèn)題,往往利用弦長(zhǎng)公式,通過(guò)整體代換,簡(jiǎn)化解題過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫(xiě)出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問(wèn)3分,(Ⅱ)小問(wèn)9分.)
直線稱為橢圓的“特征直線”,若橢圓的離心率.(1)求橢圓的“特征直線”方程;
(2)過(guò)橢圓C上一點(diǎn)作圓的切線,切點(diǎn)為P、Q,直線PQ與橢圓的“特征直線”相交于點(diǎn)E、F,O為坐標(biāo)原點(diǎn),若取值范圍恰為,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在平面直角坐標(biāo)系中,已知三點(diǎn),,,曲線C上任意—點(diǎn)滿足:.
(l)求曲線C的方程;
(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動(dòng).若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),取得最小值,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)直線與橢圓相交于兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),記為坐標(biāo)原點(diǎn).
(1)證明:
(2)若且的面積及橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知點(diǎn)為拋物線: 的焦點(diǎn),為拋物線上的點(diǎn),且.
(Ⅰ)求拋物線的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過(guò)點(diǎn)引出斜率分別為的兩直線,與拋物線的另一交點(diǎn)為,與拋物線的另一交點(diǎn)為,記直線的斜率為.
(。┤,試求的值;
(ⅱ)證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知點(diǎn),,△的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與曲線相交于不同的兩點(diǎn),.若點(diǎn)在軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知橢圓C的對(duì)稱軸為坐標(biāo)軸,且短軸長(zhǎng)為4,離心率為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點(diǎn)在y軸上,斜率為1的直線l與C相交于A,B兩點(diǎn),且
,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=.
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說(shuō)明理由;
②延長(zhǎng)NM交軸于點(diǎn)E,若|EM|=|NE|,求cos∠MSN的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com