等比數(shù)列{an}中,已知an>0,a1=2,a2+a3=24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
1
2
an+1}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,等差數(shù)列的通項(xiàng)公式
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)設(shè)數(shù)列{an}的公比為q,利用an>0,a1=2,a2+a3=24,求出公比,即可求數(shù)列{an}的通項(xiàng)公式;
(2)分組求和,即可求數(shù)列{
1
2
an+1}的前n項(xiàng)和Sn
解答: 解:(1)設(shè)數(shù)列{an}的公比為q,因?yàn)閍1=2,則a2=2q,a3=2q2…(2分)
由a2+a3=24得q+q2=12
所以q=3或-4(舍去)…(4分)
故其通項(xiàng)公式為an=2•3n-1…(6分)
(2)由(1)得,
1
2
an+1
=3n-1+1…(8分)
所以,其前n項(xiàng)和Sn=(1+3+32+…+3n-1)+n=
1
2
3n+n-
1
2
…(12分)
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)與求和,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(1,3),
b
=(x,-1)的夾角為鈍角,則實(shí)數(shù)x的取值范圍為( 。
A、(-∞,3)
B、(3,+∞)
C、(-∞,
1
3
)∪(
1
3
,3)
D、(-∞,-
1
3
)∪(-
1
3
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1是棱長(zhǎng)為1的正方體.
(1)求證:BD1⊥平面ACB1;
(2)求三棱錐B-ACB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)a1=2013,公比q=-
1
2
,數(shù)列{an}前n項(xiàng)和記為Sn,前n項(xiàng)積記為T(mén)n
(1)證明:S2≤Sn≤S1
(2)求n為何值時(shí),Tn取得最大值;
(3)證明:若數(shù)列{an}中的任意相鄰三項(xiàng)按從小到大排列,則總可以使其成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為d1,d2,…,dn,則數(shù)列{dn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
mx2+8x+n
x2+1
的定義域?yàn)镽,值域?yàn)閇0,8],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x+4
4x+8
,求證:對(duì)任意實(shí)數(shù)a,b,不等式f(a)<b2-3b+
21
4
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)
sin(π-α)
cos(-α)tan(π+α)
;
(2)
cos(360°-α)tan(180°+α)
sin(180°-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+
1
x
(x∈(-∞,0)∪(0,+∞))的圖象為c1,c1關(guān)于點(diǎn)A(2,1)的對(duì)稱(chēng)圖象為c2,c2對(duì)應(yīng)的函數(shù)為g(x).
(1)求函數(shù)g(x)的解析式,并確定其定義域;
(2)若直線y=b與c2只有一個(gè)交點(diǎn),求b的值,并求出交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四棱錐P-ABCD的底面是菱形,∠DAB=
π
3
,AC∩BD=O,PO⊥平面ABCD,E、F分別在棱PC、PA上,CE=
1
3
CP,AF=
1
3
AP,G為PD中點(diǎn),△PBD是邊長(zhǎng)為6的等邊三角形.
(Ⅰ)求證:B、E、C、F四點(diǎn)共面;
(Ⅱ)求直線EP與平面BECF所成角的正弦值;
(Ⅲ)求平面BECF與平面ABCD所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案