已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,
(1)寫出數(shù)列的前5項(xiàng);
(2)數(shù)列{an}是等差數(shù)列嗎?說(shuō)明理由.
(3)寫出{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)數(shù)列的前n項(xiàng)和Sn,分別計(jì)算即可寫出數(shù)列的前5項(xiàng);
(2)根據(jù)等差數(shù)列的定義即可判斷數(shù)列{an}是否是等差數(shù)列.
(3)根據(jù)遞推關(guān)系即可寫出{an}的通項(xiàng)公式.
解答: 解:(1)當(dāng)n=1時(shí),a1=S1=1+1+1=3,
a2=S2-S1=4,a3=S3-S2=6,
a4=S4-S3=8,
a5=S5-S4=10.
(2)數(shù)列{an}不是等差數(shù)列,
∵a2-a1=4-3=1,a3-a2=6-4=2,
∴a2-a1≠a3-a2,
故數(shù)列{an}不是等差數(shù)列.
(3)∵Sn=n2+n+1,
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n+1-[(n-1)2+(n-1)+1]=2n,
當(dāng)n=1時(shí),a1=S1=1+1+1=3不滿足an
∴{an}的通項(xiàng)公式為an=
3,n=1
2n, n≥2
點(diǎn)評(píng):本題主要考查數(shù)列遞推關(guān)系的應(yīng)用,以及等差數(shù)列的判斷,根據(jù)當(dāng)n≥2時(shí),an=Sn-Sn-1的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:“若a≥0,則x2+x-a=0有實(shí)根”.
(Ⅰ)試寫出命題p的逆否命題;
(Ⅱ)判斷命題p的逆否命題的真假,并寫出判斷過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈R,|x|<1時(shí),有如下表達(dá)式:1+x+x2+…+xn+…=
1
1-x
,兩邊同時(shí)積分得:
1
2
0
ldx+
1
2
0
xdx+
1
2
0
x2dx+…+
1
2
0
xndx+…=
1
2
0
1
1-x
dx,從而得到如下等式:1×
1
2
+
1
2
×
1
2
2+
1
3
×(
1
2
3+…+
1
n+1
×(
1
2
n+1+…=ln2,請(qǐng)根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計(jì)算:C
 
0
n
×
1
2
+
1
2
C
 
1
n
×(
1
2
2+
1
3
C
2
n
×(
1
2
3+…+
1
n+1
C
n
n
×(
1
2
n+1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(1)求證:AD⊥平面PBE
(2)若VP-BCDE=2VQ-ABCD,試求
CP
CQ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=3,|
b
|=
3
,(
a
+
b
)•(
a
-2
b
)=4.
(1)求
a
b

(2)求|
a
+
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(
π
4
+x)cos(
π
4
-x)-1
(1)求函數(shù)f(x)的周期;
(2)若函數(shù)g(x)=f(x)-2
3
cos2x,試求函數(shù)g(x)的單調(diào)遞增區(qū)間;
(3)若f2(x)-cos2x≥m2-m-7恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F與拋物線y2=-4x的焦點(diǎn)重合,直線x-y+
2
2
=0與以原點(diǎn)O為圓心,以橢圓的離心率e為半徑的圓相切.
(1)求該橢圓C的方程;
(2)過(guò)點(diǎn)F的直線交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D,E兩點(diǎn).記△GFD的面積為S1,△OED的面積為S2.試問:是否存在直線AB,使得S1=S2?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=4,公比q≠1的等比數(shù)列,Sn是其前n項(xiàng)和,且4a1,a5,-2a3成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(1)求證:D1F⊥平面ADE;
(2)若AB=1,求三棱錐D1-DEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案