【題目】如圖,在三棱錐中,平面,,,,分別在線段,上,,,是的中點.
(1)證明:平面;
(2)若二面角的大小為,求.
【答案】(1)詳見解析;(2)
【解析】
試題分析:(Ⅰ)取的中點,則,從而平面,由中位線定理得,從而平面,進而平面平面,由此能證明平面.(Ⅱ)法1:推導出,從而平面,進而得到是二面角的平面角,由此能求出的正切值.法2:以為坐標原點,所在的直線分別為軸,軸,軸,建立空間直角坐標系,利用向量法能求出的正切值.
試題解析:(1)證明:取的中點,連接、,則,所以.
又平面,所以平面.
又是的中位線,所以,
從而平面.
又,所以平面平面,
因為平面,所以平面.
(2)解:由平面知,,
由,知,
故平面.
由(1)知,而,故.
所以是二面角的平面角,
則.
設(shè),則,又易知在中,,可知,
在中,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求的單調(diào)區(qū)間及最小值;
(2)若在區(qū)間上不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列結(jié)論中正確的是( )
A. 在復(fù)平面上,x軸叫做實軸,y軸叫做虛軸 B. 任何兩個復(fù)數(shù)都不能比較大小
C. 如果實數(shù)a與純虛數(shù)ai對應(yīng),那么實數(shù)集與純虛數(shù)集是一一對應(yīng)的 D. -1的平方根是i
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機抽取2張,則取出的2張卡片上的數(shù)字之和為奇數(shù)的所有基本事件數(shù)為( )
A. 2 B. 3
C. 4 D. 6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點,點在直線上運動,過點與垂直的直線和線段的垂直平分線相交于點。
(1)求動點的軌跡的方程;
(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于,兩點。試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓心坐標為(,1)的圓M與x軸及直線y=x分別相切于A,B兩點,另一圓N與圓M外切、且與x軸及直線y=x分別相切于C、D兩點.
(1)求圓M和圓N的方程;
(2)過點B作直線MN的平行線l,求直線l被圓N截得的弦的長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為橢圓的上、下焦點,是拋物線的焦點,點是與在第二象限的交點,且.
(1)求橢圓的方程;
(2)與圓相切的直線交橢圓于,若橢圓上一點滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上具有單調(diào)性,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(Ⅰ)求實數(shù)的值;
(Ⅱ)用定義證明函數(shù)在上的單調(diào)性;
(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com