【題目】已知函數(shù).
(1)若函數(shù)在上具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)
【解析】
試題分析:(1)由函數(shù)解析式可求得函數(shù)對(duì)稱軸,從而得到函數(shù)的單調(diào)區(qū)間,得到區(qū)間與單調(diào)區(qū)間的關(guān)系,從而求得m的取值范圍;(2)中由函數(shù)圖像的上下方位置關(guān)系可得到函數(shù)值的大小關(guān)系,從而得到不等式恒成立問題,將不等式轉(zhuǎn)化為函數(shù),通過考察函數(shù)的最值得到m需滿足的條件,從而求解其取值范圍
試題解析:(1)對(duì)稱軸,且圖象開口向上.
若函數(shù)在上具有單調(diào)性,則滿足
解得:---------------------4分
(2)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,則只需:
在區(qū)間恒成立
即對(duì)任意恒成立---------------6分
設(shè)其圖象的對(duì)稱軸為直線,且圖象開口向上
①當(dāng)時(shí),h(x)在[-1,1]上是減函數(shù),所以
所以,
②當(dāng)即,函數(shù)h(x)在頂點(diǎn)處取得最小值,即
解得:
③當(dāng)時(shí),h(x)在[-1,1]上是增函數(shù),所以,
綜上所述:-----------------------------12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)與圖象的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義在區(qū)間內(nèi),對(duì)于任意的,有,且當(dāng)時(shí),.
(1)驗(yàn)證函數(shù)是否滿足這些條件;
(2)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(3)若,求方程的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面是一個(gè)2×2列聯(lián)表,則表中a、b的值分別為 ( )
y1 | y2 | 合計(jì) | |
x1 | a | 21 | 73 |
x2 | 2 | 25 | 27 |
合計(jì) | b | 46 | 100 |
A. 94、96 B. 52、50
C. 52、54 D. 54、52
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,G為ABC的重心,延長(zhǎng)線段AG交BC于F,B1F交BC1于E.
(1)求證:GE∥平面AA1B1B;
(2)平面AFB1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,設(shè),若對(duì)任意,
恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com