19.已知直線${l_1}:ax-2y=2a-4,{l_2}:2x+{a^2}y=2{a^2}+4({0<a<2})$與兩坐標(biāo)軸的正半軸圍成四邊形,當(dāng)a為何值時(shí),圍成的四邊形面積最小,并求最小值.

分析 求出其交點(diǎn)坐標(biāo).由l1:ax-2y-2a+4=0,l2:2x+a2y-2a2-4=0,設(shè)l1與y軸交于點(diǎn)A,l2與x軸交于點(diǎn)B.則A(0,2-a),B(a2+2),求出A,B到OM的距離,可得結(jié)論.

解答 解:由直線方程可知,l1和l2均過定點(diǎn) M(2,2)…3
設(shè)l1與y軸交于點(diǎn)A,l2與x軸交于點(diǎn)B.則A(0,2-a),B(a2+2),….5
四邊形OAMB的面積等于三角形AOM和三角形BOM的面積之和.$|{OM}|=2\sqrt{2}$,直線OM的方程是x-y=0.
A,B到OM的距離是d1,d2,則${d_1}=\frac{{|{-2+a}|}}{{\sqrt{2}}}=\frac{2-a}{{\sqrt{2}}},{d_2}=\frac{{|{{a^2}+2}|}}{{\sqrt{2}}}=\frac{{{a^2}+2}}{{\sqrt{2}}}$,….8
$\begin{array}{l}S=\frac{1}{2}×2\sqrt{2}×({{d_1}+{d_2}})={a^2}-a+4\\={({a-\frac{1}{2}})^2}+\frac{15}{4}\end{array}$…10
所以當(dāng)$a=\frac{1}{2}$時(shí),面積最小,最小值為$\frac{15}{4}$…12

點(diǎn)評(píng) 本題考查兩直線的交點(diǎn)坐標(biāo)的求法和四邊形面積的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意配方法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$\frac{a-c}=\frac{a-b}{a+c}$,則角C等于( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax-1.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(diǎn)A(6,0)與點(diǎn)B(-2,0)的距離是( 。
A.6B.8C.$2\sqrt{10}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1且a1,a2+1,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{nan}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sinθ=$\frac{4}{5}$,且θ在第二象限,則sin2θ=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)是R上的奇函數(shù),且f(1)=a,若對(duì)任意x∈R,均有f(x+2)=f(x),則a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)復(fù)數(shù)$z=\frac{2i}{(1+i)}$,則$\overline z$的虛部是( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}中,a3+a8=12,則S10=60.

查看答案和解析>>

同步練習(xí)冊(cè)答案