【題目】已知函數(shù),其中為自然對數(shù)的底,為實常數(shù).

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)當時,求函數(shù)在區(qū)間上的最大值.

【答案】1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是2

【解析】

(1)求導后分析導數(shù)求單調(diào)增區(qū)間,再求單調(diào)遞減區(qū)間即可.

(2)求導后根據(jù)極值點的大小關(guān)系,的情況討論函數(shù)的單調(diào)性與最值即可.

1)當時,,.

,得,,即.

所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

2.

因為,則.

1.當,即時,由,得,

上單調(diào)遞增,在上單調(diào)遞減,

所以.

因為,

,所以.

2.當,即時,,

所以上單調(diào)遞減,

所以.

3.當,即時,由,得,

上單調(diào)遞增,在上單調(diào)遞減,

所以,

因為,則

時,,;

時,,.

4.當,即時,上單調(diào)遞增,上單調(diào)遞減,

.

綜上分析,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差攝氏度

10

11

13

12

8

發(fā)芽

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.

(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:

(2)根據(jù)122日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,

(1)求證:平面平面;

(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列的前項和為,且的等差中項.

(1)求數(shù)列的通項公式;

(2)令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫糖是一種以糖為材料在石板上進行造型的民間藝術(shù),常見于公園與旅游景點.某師傅制作了一種新造型糖畫,為了進行合理定價先進性試銷售,其單價(元)與銷量(個)相關(guān)數(shù)據(jù)如下表:

(1)已知銷量與單價具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;

(2)若該新造型糖畫每個的成本為元,要使得進入售賣時利潤最大,請利用所求的線性相關(guān)關(guān)系確定單價應該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計計算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A. 為真命題,則均為假命題;

B. 命題“”的否定是“,”;

C. 等比數(shù)列的前項和為,若“”則“”的否命題為真命題;

D. “平面向量的夾角為鈍角”的充要條件是“”;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為別為F1F2,且過點

1)求橢圓的標準方程;

2)如圖,點A為橢圓上一位于x軸上方的動點,AF2的延長線與橢圓交于點B,AO的延長線與橢圓交于點C,求ABC面積的最大值,并寫出取到最大值時直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠包裝白糖的生產(chǎn)線,正常情況下生產(chǎn)出來的白糖質(zhì)量服從正態(tài)分布(單位:).

(Ⅰ)求正常情況下,任意抽取一包白糖,質(zhì)量小于的概率約為多少?

(Ⅱ)該生產(chǎn)線上的檢測員某天隨機抽取了兩包白糖,稱得其質(zhì)量均小于,檢測員根據(jù)抽檢結(jié)果,判斷出該生產(chǎn)線出現(xiàn)異常,要求立即停產(chǎn)檢修,檢測員的判斷是否合理?請說明理巾.

附:,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,準線為,若為拋物線上第一象限的一動點,過的垂線交準線于點,交拋物線于兩點.

(Ⅰ)求證:直線與拋物線相切;

(Ⅱ)若點滿足,求此時點的坐標.

查看答案和解析>>

同步練習冊答案