【題目】在某次試驗中,有兩個試驗數(shù)據(jù),統(tǒng)計的結(jié)果如下面的表格1.

(1)在給出的坐標系中畫出的散點圖; 并判斷正負相關(guān);

(2)填寫表格2,然后根據(jù)表格2的內(nèi)容和公式求出的回歸直線方程,并估計當10的值是多少?(公式:

1

2

3

4

5

2

3

4

4

5

表1

表格2

序號

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

【答案】(1)見解析;(2)見解析

【解析】

(1)由表格一中數(shù)據(jù),描點可得xy的散點圖,根據(jù)圖象判斷正負相關(guān)性即可;

(2)由(1)中數(shù)據(jù),列表后,分別求出3,3.6,可得回歸直線方程,進而將x=10代入可得答案.

(1)如圖,正相關(guān)

(2)表格如下

序號

x

y

x2

xy

1

1

2

1

2

2

2

3

4

6

3

3

4

9

12

4

4

4

16

16

5

5

5

25

25

15

18

55

61

,

,

所以回歸直線方程為:

時,估計

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩支排球隊進行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是 ,其余每局比賽甲隊獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨立.
(1)分別求甲隊3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對方得1分,求乙隊得分X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O(shè)為極點,x正半軸為極軸的極坐標系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(I)討論函數(shù)的單調(diào)性,并證明當x>﹣2時,xex+2+x+4>0;
(Ⅱ)證明:當a∈[0,1)時,函數(shù)g(x)= (x>﹣2)有最小值,設(shè)g(x)最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當x∈(0,2]時,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關(guān)系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,曲線C1 (θ為參數(shù)),在以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系中,曲線C2:ρsin( )=1.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)曲線C1上恰好存在三個不同的點到曲線C2的距離相等,分別求這三個點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函數(shù)f(x)= 的圖象在y軸右側(cè)的第一個最高點(即函數(shù)取得最大值的點)為 ,在原點右側(cè)與x軸的第一個交點為
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)在△ABC中,角A′B′C的對邊分別是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求邊長c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別是雙曲線 =1(a>0,b>0)的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是(
A.(1,
B.( ,+∞)
C.( ,2)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A滿足f(A)=2,而 ,求邊BC的最小值.

查看答案和解析>>

同步練習冊答案