設(shè)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)時,,且g(-3)=0,則不等式的解集是      ( )
A.(-3,0)∪(3,+∞)B. (-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)
D

試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014922989885.png" style="vertical-align:middle;" />,所以,
在(-∞,0)是增函數(shù),又分別是定義在R上的奇函數(shù)和偶函數(shù),是奇函數(shù),所以,其在(0,+∞)是增函數(shù),而g(-3)=0,,故g(3)="0," 不等式的解集是(-∞,-3)∪(0,3),選D.
點(diǎn)評:中檔題,本題綜合性較強(qiáng),綜合考查導(dǎo)數(shù)的運(yùn)算法則,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的奇偶性與單調(diào)性之間的關(guān)系。當(dāng)明確了函數(shù)的奇偶性、單調(diào)性后,函數(shù)的大致圖象幫助我們確定得到不等式的解集。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)試問的值是否為定值?若是,求出該定值;若不是,請說明理由;
(2)定義,其中,求
(3)在(2)的條件下,令.若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是函數(shù)的兩個極值點(diǎn).
(1)若,求函數(shù)的解析式;
(2)若,求實(shí)數(shù)的最大值;
(3)設(shè)函數(shù),若,且,求函數(shù)內(nèi)的最小值.(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時,上有且只有一個極值點(diǎn),求實(shí)數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過原點(diǎn)的直線的圖象有兩個切點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)當(dāng)k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k∈(1/2,1]時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象經(jīng)過四個象限的一個充分必要條件是(      )
A.B.C.?D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“函數(shù)”是“可導(dǎo)函數(shù)在點(diǎn)處取到極值”的  條件。 (    )
A.充分不必要B.必要不充分 C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)=,
(1)求函數(shù)的單調(diào)區(qū)間
(2)若關(guān)于的不等式對一切(其中)都成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正實(shí)數(shù),使?若不存在,說明理由;若存在,求取值的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)時,求曲線處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個極大值和一個極小值,且極大值與極小值的積為,求
值.

查看答案和解析>>

同步練習(xí)冊答案