已知函數(shù)
.
(1)試問
的值是否為定值?若是,求出該定值;若不是,請說明理由;
(2)定義
,其中
,求
;
(3)在(2)的條件下,令
.若不等式
對
且
恒成立,求實數(shù)
的取值范圍.
試題分析:(1)根據(jù)函數(shù)解析式的特點直接代入計算
的值;(2)利用(1)中條件
的條件,并注意到定義
中第
項與倒數(shù)第
項的和
這一條件,并利用倒序相加法即可求出
的表達式,進而可以求出
的值;(3)先利用
和
之間的關(guān)系求出數(shù)列
的通項公式,然后在不等式
中將
與含
的代數(shù)式進行分離,轉(zhuǎn)化為
恒成立的問題進行處理,最終利用導(dǎo)數(shù)或作差(商)法,通過利用數(shù)列
的單調(diào)性求出
的最小值,最終求出實數(shù)
的取值范圍.
試題解析:(1)
的值為定值2.
證明如下:
.
(2)由(1)得
.
令
,則
.
因為
①,
所以
②,
由①+②得
,所以
.
所以
.
(3)由(2)得
,所以
.
因為當(dāng)
且
時,
.
所以當(dāng)
且
時,不等式
恒成立
.
設(shè)
,則
.
當(dāng)
時,
,
在
上單調(diào)遞減;
當(dāng)
時,
,
在
上單調(diào)遞增.
因為
,所以
,
所以當(dāng)
且
時,
.
由
,得
,解得
.
所以實數(shù)
的取值范圍是
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
的極值;
(2)求函數(shù)
的單調(diào)區(qū)間;
(3)是否存在實數(shù)
,使函數(shù)
在
上有唯一的零點,若有,請求出
的范圍;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,其中
且
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(II)當(dāng)
時,若存在
,使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
(
).
(1)當(dāng)
時,判斷
在定義域上的單調(diào)性;
(2)若
在
上的最小值為
,求
的值;
(3)若
在
上恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=
+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時,求證:1-
<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:
+
+…+
<lnn<1+
+ +
(n∈N
*,且n≥2).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
在區(qū)間
,0)內(nèi)單調(diào)遞增,則
取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)
時,
,且g(-3)=0,則不等式
的解集是 ( )
A.(-3,0)∪(3,+∞) | B. (-3,0)∪(0,3) |
C.(-∞,-3)∪(3,+∞) | D.(-∞,-3)∪(0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
,
為
的導(dǎo)函數(shù),則
得圖像是( )
查看答案和解析>>