精英家教網 > 高中數學 > 題目詳情
設f(x)為定義在R上的偶函數,當x≤-1時,f(x)=x+b,且f(x)的圖象經過點(-2,0),又在y=f(x)的圖象中,另一部分是頂點在(0,2),且過點(-1,1)的一段拋物線,試寫出函數f(x)的表達式.
分析:由題意知,x≤-1時,用點斜式求得,x≥1時用偶函數求得,-1<x<1時,用待定系數法求得函數的解析式即可.
解答:解:經過點(-2,0),斜率為1的射線:y=x+2,(x≤-1)
拋物線過(-1,1)和(0,2)
令y=ax2+c
代入,得y=-x2+2,(-1<x<1)
又函數在R上是偶函數
所以x≥1時,射線經過(2,0)且斜率為-1
即y=-x+2,(x≥1)
所以f(x)=
-x+2,      (x>1)
-x2+2,     (-1≤x≤1)
x+2,         (x<-1)
點評:本題主要考查分段函數及函數的圖象、函數奇偶性的應用、待定系數當等基礎知識,考查運算求解能力,考查數形結合思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)為定義在R上的偶函數,當0≤x≤2時,y=x;當x>2時,y=f(x)的圖象時頂點在P(3,4),且過點A(2,2)的拋物線的一部分
(1)求函數f(x)在(-∞,-2)上的解析式;
(2)在右面的直角坐標系中直接畫出函數f(x)的圖象;
(3)寫出函數f(x)值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)為定義在R上的奇函數.當x≥0時,f(x)=lg(x+1)-b(b為常數),則f(-9)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)為定義在R上的奇函數,當x≥0時,f(x)=x(x-1),則f(-2)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)為定義在R上的函數,對于任意的實數x滿足f(x+2)=f(x),且在區(qū)間[-1,1]上有f(x)=
ax+2,(-1≤x≤0)
logax,(0<x≤1)
(a>0且a≠1),則f(
5
2
)
=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•濟寧二模)下列命題:
①線性回歸方程對應的直線
y
=
b
x+
a
至少經過其樣本數據點(x1,yl),(x1,yl),…,(xn,yn)中的一個點;
②設f(x)為定義在R上的奇函數,當x>0時,f(x)=
x
.則當x<0時,f(x)=
-x

③若圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標軸的交點坐標分別為(x1,0),(x2,0),(0,yl),(0,y2),則x1x2-y1y2=0;
④若圓錐的底面直徑為2,母線長為
2
,則該圓錐的外接球表面積為4π.
其中正確命題的序號為.
③④
③④
.(把所有正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案