過曲線上的一點(diǎn)作曲線的切線,交x軸于點(diǎn)P1,過P1作垂直于x軸的直線交曲線于Q1,過Q1作曲線的切線,交x軸于點(diǎn)P2;過P2作垂直于x軸的直線交曲線于Q2,過Q2作曲線的切線,交x軸于點(diǎn)P3;……如此繼續(xù)下去得到點(diǎn)列:設(shè)的橫坐標(biāo)為
(I)試用n表示;
(II)證明:
(III)證明:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:新課標(biāo)2012屆高三二輪復(fù)習(xí)綜合驗(yàn)收(4)數(shù)學(xué)理科試題 題型:044
過曲線上的一點(diǎn)Q0(0,2)作曲線的切線,交x軸于點(diǎn)P1,過P1作垂直于x軸的直線交曲線于Q1,過Q1作曲線的切線,交x軸于點(diǎn)P2;過P2作垂直于x軸的直線交曲線于Q2,過Q2作曲線的切線,交x軸于點(diǎn)P3;……如此繼續(xù)下去得到點(diǎn)列:P1,P2,P3,…Pn…,設(shè)Pn的橫坐標(biāo)為xn(n∈N*)
(Ⅰ)試用n表示xn;
(Ⅱ)證明:
(Ⅲ)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆廣東省梅州市曾憲梓中學(xué)高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
如圖,過曲線:上一點(diǎn)作曲線的切線交軸于點(diǎn),又過作 軸的垂線交曲線于點(diǎn),然后再過作曲線的切線交軸于點(diǎn),又過作軸的垂線交曲線于點(diǎn),,以此類推,過點(diǎn)的切線 與軸相交于點(diǎn),再過點(diǎn)作軸的垂線交曲線于點(diǎn)(N).
(1) 求、及數(shù)列的通項(xiàng)公式;
(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達(dá)式;
(3) 在滿足(2)的條件下, 若數(shù)列的前項(xiàng)和為,求證:N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三第三次模擬考試?yán)頂?shù)B卷 題型:解答題
(本小題滿分12分)
過曲線上的一點(diǎn)作曲線的切線,交x軸于點(diǎn)P1,過P1作垂直于x軸的直線交曲線于Q1,過Q1作曲線的切線,交x軸于點(diǎn)P2;過P2作垂直于x軸的直線交曲線于Q2,過Q2作曲線的切線,交x軸于點(diǎn)P3;……如此繼續(xù)下去得到點(diǎn)列:設(shè)的橫坐標(biāo)為
(I)試用n表示;
(II)證明:
(III)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆廣西桂林十八中高二下學(xué)期期中考試試卷數(shù)學(xué)(理科) 題型:解答題
已知過曲線上任意一點(diǎn)作直線的垂線,垂足為,且.
(1)求曲線的方程;
(2)設(shè)是曲線上兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng)變化且
為定值時(shí),證明直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com