【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護人員的奮力救治,二月份新冠肺炎疫情得到了控制.甲、乙兩個地區(qū)采取防護措施后,統(tǒng)計了從27日到213日一周的新增新冠肺炎確診人數(shù),繪制成如下折線圖:

1)根據(jù)圖中甲、乙兩個地區(qū)折線圖的信息,寫出你認為最重要的兩個統(tǒng)計結(jié)論;

2)治療新冠肺炎藥品的研發(fā)成了當(dāng)務(wù)之急,某藥企計劃對甲地區(qū)的項目或乙地區(qū)的項目投入研發(fā)資金,經(jīng)過評估,對于項目,每投資十萬元,一年后利潤是l.38萬元、1.18萬元、l.14萬元的概率分別為、;對于項目,利潤與產(chǎn)品價格的調(diào)整有關(guān),已知項目產(chǎn)品價格在一年內(nèi)進行2次獨立的調(diào)整,每次價格調(diào)整中,產(chǎn)品價格下調(diào)的概率都是,記項目一年內(nèi)產(chǎn)品價格的下調(diào)次數(shù)為,每投資十萬元,0、1、2時,一年后相應(yīng)利潤是1.4萬元、1.25萬元、0.6萬元.記對項目投資十萬元,一年后利潤的隨機變量為,記對項目投資十萬元,一年后利潤的隨機變量為

(i)的概率分布列和數(shù)學(xué)期望,;

(ii)如果你是投資決策者,將做出怎樣的決策?請寫出決策理由.

【答案】1)①甲地區(qū)比乙地區(qū)的新增人數(shù)的平均數(shù)低; ②甲地區(qū)比乙地區(qū)的方差大;

2(i)分布列見解析,=1.2, (ii) 當(dāng)時,投資項目;當(dāng)時,兩個項目都可以;當(dāng)時,投資項目.理由見解析

【解析】

1)由圖表可知甲地區(qū)的數(shù)據(jù)比較分散,所以甲地區(qū)比乙地區(qū)的方差大;也可求出兩地區(qū)的平均數(shù),比較平增多數(shù);

2)(i)由題可知分別取l.38、1.18l.14時,其對應(yīng)的概率分別為、、,從而可列出的分布列,由題意得,從而可列出的分布列,而0、1、2時,一年后相應(yīng)利潤是1.4萬元、1.25萬元、0.6萬元,由此可列出的分布列,并可求出期望;

ii)對(i)得到的數(shù)學(xué)期望,比較大小,進行決策.

1)①甲地區(qū)比乙地區(qū)的新增人數(shù)的平均數(shù)低;

②甲地區(qū)比乙地區(qū)的方差大;

2)(i)由題意得的概率分布列為

1.38

1.18

1.14

所以

由題意得,即的概率分布列為

0

1

2

由題意得下調(diào)次數(shù)和利潤的關(guān)系為

0

1

2

1.4

1.25

0.6

所以的概率分布列為

1.4

1.25

0.6

所以

ii)當(dāng),得,即,

整理得,解得;

當(dāng)時,

當(dāng)時,;

所以,當(dāng)時,投資項目;當(dāng)時,兩個項目都可以;當(dāng)時,投資項目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某貧困地區(qū)共有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實施“精準扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).

1)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

2)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果將頻率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;

3)樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

超過2萬元

不超過2萬元

總計

平原地區(qū)

山區(qū)

5

總計

附:

PK2k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線上的一點,,為拋物線上異于點的兩點,且直線的斜率與直線的斜率互為相反數(shù).

1)求直線的斜率;

2)設(shè)直線過點并交拋物線于,兩點,且,直線軸交于點,試探究的夾角是否為定值,若是則求出定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個,在水平桌面上無滑動滾動一周,它們的中心的運動軌跡長分別為,,,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,ADCD,ABCDAB3,AD4,AE5,

1)證明:DF∥平面BCE

2)求A到平面BEDF的距離,并求四棱錐ABEDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個分類變量XY,由他們的觀測數(shù)據(jù)計算得到K2的觀測值范圍是3.841<k<6.635,據(jù)K2的臨界值表,則以下判斷正確的是(

P(K2k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.在犯錯誤概率不超過0.05的前提下,認為變量XY有關(guān)系

B.在犯錯誤概率不超過0.05的前提下,認為變量XY沒有關(guān)系

C.在犯錯誤概率不超過0.01的前提下,認為變量XY有關(guān)系

D.在犯錯誤概率不超過0.01的前提下,認為變量XY沒有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,平面,,.

1)求證:平面

2)已知二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的離心率為,左、右焦點分別為,過的直線與C交于M,N兩點,的周長為.

1)求橢圓C的標準方程;

2)過M作與y軸垂直的直線l,點,試問直線與直線l交點的橫坐標是否為定值?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案