精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C)的離心率為,左、右焦點分別為,,過的直線與C交于M,N兩點,的周長為.

1)求橢圓C的標準方程;

2)過M作與y軸垂直的直線l,點,試問直線與直線l交點的橫坐標是否為定值?請說明理由.

【答案】1;(2)為定值2,理由見解析

【解析】

1)由離心率和過焦點的三角形的周長及a,bc之間的關系求出a,b的值,進而求出橢圓的方程;

2)由(1)可得直線的方程,與橢圓聯立求出兩根之和及兩根之積,求出的方程令,求出x的表達式,將兩根之和及兩根之積代入可得為定值2

解:(1)三角形的周長,,可得:,

所以橢圓的方程為:;

2)設,,

由(1)得,設直線的直線為:,

聯立直線與橢圓的方程:,解得:,

,,

直線的方程:,令,可得:

所以直線與直線l交點的橫坐標為定值2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在黨中央的正確領導下,通過全國人民的齊心協力,特別是全體一線醫(yī)護人員的奮力救治,二月份新冠肺炎疫情得到了控制.甲、乙兩個地區(qū)采取防護措施后,統計了從27日到213日一周的新增新冠肺炎確診人數,繪制成如下折線圖:

1)根據圖中甲、乙兩個地區(qū)折線圖的信息,寫出你認為最重要的兩個統計結論;

2)治療新冠肺炎藥品的研發(fā)成了當務之急,某藥企計劃對甲地區(qū)的項目或乙地區(qū)的項目投入研發(fā)資金,經過評估,對于項目,每投資十萬元,一年后利潤是l.38萬元、1.18萬元、l.14萬元的概率分別為、;對于項目,利潤與產品價格的調整有關,已知項目產品價格在一年內進行2次獨立的調整,每次價格調整中,產品價格下調的概率都是,記項目一年內產品價格的下調次數為,每投資十萬元,0、12時,一年后相應利潤是1.4萬元、1.25萬元、0.6萬元.記對項目投資十萬元,一年后利潤的隨機變量為,記對項目投資十萬元,一年后利潤的隨機變量為

(i),的概率分布列和數學期望,;

(ii)如果你是投資決策者,將做出怎樣的決策?請寫出決策理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為是橢圓上一動點(與左、右頂點不重合)已知的內切圓半徑的最大值為,橢圓的離心率為.

1)求橢圓C的方程;

2)過的直線交橢圓兩點,過軸的垂線交橢圓與另一點不與重合).的外心為,求證為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱中,,側面底面D是棱的中點.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線的焦點F且傾斜角為的直線交拋物線于AB兩點,交其準線于點C,且|AF|=|FC|,|BC|=2.

1)求拋物線C的方程;

2)直線l交拋物線CDE兩點,且這兩點位于x軸兩側,與x軸交于點M,若·的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.

1)求的值及圓的方程;

2)設上任意一點,過點的切線,切點為,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數據統計如下(單位:噸):


廚余垃圾

可回收物

其他垃圾

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

)試估計廚余垃圾投放正確的概率

)試估計生活垃圾投放錯誤的概率

)假設廚余垃圾在廚余垃圾箱、可回收物箱、其他垃圾箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數據a,b,c,的方差最大時,寫出a,b,c的值(結論不要求證明),并求此時的值.

(注:,其中為數據的平均數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(含35件)的部分每件4元,超出35件的部分每件7.

1)根據表中數據寫出甲公司員工A在這10天投遞的快遞件數的平均數和眾數;

2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為X(單位:元),求X的分布列和數學期望;

3)根據表中數據估算兩公司的每位員工在該月所得的勞務費.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為正整數,區(qū)間(其中,)同時滿足下列兩個條件:

①對任意,存在使得;

②對任意,存在,使得(其中).

(Ⅰ)判斷能否等于;(結論不需要證明).

(Ⅱ)求的最小值;

(Ⅲ)研究是否存在最大值,若存在,求出的最大值;若不在在,說明理由.

查看答案和解析>>

同步練習冊答案