(本小題滿分13分)
已知點,,△的周長為6.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設過點的直線與曲線相交于不同的兩點.若點軸上,且,求點的縱坐標的取值范圍.
(1)     (2)

試題分析:解:(Ⅰ)由題意可知,,
故動點的軌跡是以,為焦點的橢圓.                   ………………………1分
設其方程為,則,,.       ………………………3分
所以橢圓的方程為                          ………………………4分
(Ⅱ)當直線的斜率不存在時,滿足條件的點的縱坐標為.    ………………………5分
當直線的斜率存在時,設直線的方程為.
聯(lián)立得,
.          ………………………6分
,,則.
的中點為,則,,
所以.                                  ………………………9分
由題意可知
又直線的垂直平分線的方程為.
解得.                           ………………………10分
時,因為,所以;
時,因為,所以.           ………………………12分
綜上所述,點縱坐標的取值范圍是.               ………………………13分
點評:解決這類問題的關鍵是能利用已知中的條件,結合圓錐曲線的定義,來求解軌跡方程,同時能結合直線與橢圓的方程,聯(lián)立方程組,對于線段相等,運用等腰三角形中線是高線來得到垂直關系進而得到分析,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若雙曲線的離心率為e,則e=             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的漸近線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是非零實數(shù),則方程所表示的圖形可能是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在拋物線y2=2px上,橫坐標為4的點到焦點的距離為5,則p的值為(   )
A.B.1C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若關于的方程的三個根可分別作為一個橢圓、雙曲線、拋物線的離心率,則的取值范圍為         . 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知動點M的坐標滿足,則動點M的軌跡方程是
A.橢圓B.雙曲線C.拋物線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對稱軸為坐標軸的雙曲線的漸近線方程為,若雙曲線上有一點M(),使,那雙曲線的交點(     )。
A.在軸上
B.在軸上
C.當時在軸上
D.當時在軸上

查看答案和解析>>

同步練習冊答案