【題目】已知橢圓的離心率為,點在橢圓上

)求橢圓的方程

設動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點, (兩點均不在坐標軸上),且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由

【答案】(1) 橢圓方程為;(2)見解析.

【解析】試題分析:(I)借助題設條件建立方程組求解;(II)借助題設運用直線與橢圓的位置關(guān)系推證和探求.

試題解析:

I)由題意得: ,

又點在橢圓上,,解得, ,

橢圓的方程為………………5

II)存在符合條件的圓,且此圓的方程為

證明如下:假設存在符合條件的圓,并設此圓的方程為

當直線的斜率存在時,設的方程為

由方程組

直線與橢圓有且僅有一個公共點,

,即

由方程組

,則,

設直線的斜率分別為,

,將代入上式,

要使得為定值,則,即,代入驗證知符合題意.

當圓的方程為時,圓與的交點滿足為定值

當直線的斜率不存在時,由題意知的方程為

此時,圓的交點也滿足

綜上,當圓的方程為時,

圓與的交點滿足直線的斜率之積為定值……………………12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標原點O為極點,x軸的正非負半軸為極軸,取相同單位長度的極坐標系中,圓的極坐標方程為ρ=4sinθ.
(1)求直線l被圓截得的弦長;
(2)從極點作圓C的弦,求各弦中點的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,

)求數(shù)列的通項公式;

)若數(shù)列的公比大于,且,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3-3ax+b(a≠0).

(1)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合 ,B={y|y=2x+1,x∈R},則R(A∩B)=(
A.(﹣∞,1]
B.(﹣∞,1)
C.(0,1]
D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標劃分為:指標大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結(jié)果統(tǒng)計如表:

測試指標

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)試分別估計芯片甲,芯片乙為合格品的概率;
(2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
(i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列和數(shù)學期望;
(ii)求生產(chǎn)5件芯片乙所獲得的利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A(0,2)是圓x2y216內(nèi)的定點,BC是這個圓上的兩個動點,若BACA,求BC中點M的軌跡方程,并說明它的軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4:坐標系與參數(shù)方程.
極坐標系與直角坐標系xoy有相同的長度單位,以原點為極點,以x軸正半軸為極軸,已知曲線C1的極坐標方程為ρ=4cosθ,曲線C2的參數(shù)方程為 (t為參數(shù),0≤α<π),射線θ=φ,θ=φ+ ,θ=φ﹣ 與曲線C1交于(不包括極點O)三點A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當φ= 時,B,C兩點在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐A-BCDE,底面BCDE是等腰梯形,BC DE, DCB=45°,OBC中點,AO=,BC=6,AD=AE=2CD=.

(1)證明:AO⊥平面BCD;

(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

同步練習冊答案