【題目】某工廠生產(chǎn)甲,乙兩種圖畫(huà)紙,計(jì)劃每種圖畫(huà)紙的生產(chǎn)量不少于8t,已知生產(chǎn)甲種圖畫(huà)紙1t要用蘆葦7t、黃麻3t、楓樹(shù)5t;生產(chǎn)乙種圖畫(huà)紙1t要用蘆葦3t、黃麻4t、楓樹(shù)8 t.現(xiàn)在倉(cāng)庫(kù)內(nèi)有蘆葦300t、黃麻150t.楓樹(shù)200t,試列出滿足題意的不等式組.

【答案】

【解析】

設(shè)甲、乙兩種圖畫(huà)紙的生產(chǎn)量分別為,再根據(jù)不少于的含義是大于等于,生產(chǎn)甲、乙兩種圖畫(huà)紙所用的蘆葦、黃麻、楓樹(shù)總量小于等于倉(cāng)庫(kù)的存儲(chǔ)量可列出相應(yīng)的不等關(guān)系,得解.

設(shè)甲、乙兩種圖畫(huà)紙的生產(chǎn)量分別為,,根據(jù)題意,應(yīng)有如下的不等關(guān)系:

①生產(chǎn)甲、乙兩種圖畫(huà)紙所用的蘆葦總量不超過(guò),用不等式表示為;

②生產(chǎn)甲、乙兩種圖畫(huà)紙所用的黃麻總量不超過(guò),用不等式表示為;

③生產(chǎn)甲、乙兩種圖畫(huà)紙所用的楓樹(shù)總量不超過(guò),用不等式表示為;

④甲、乙兩種圖畫(huà)紙的生產(chǎn)量都不少于,用不等式表示為.

所以滿足.題意的不等式組為

故填:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在地面上同一地點(diǎn)觀測(cè)遠(yuǎn)方勻速垂直上升的熱氣球,在上午10點(diǎn)整熱氣球的仰角是到上午10點(diǎn)20分的仰角變成.請(qǐng)利用下表判斷到上午11點(diǎn)整時(shí),熱氣球的仰角最接近哪個(gè)度數(shù)( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣ex(a∈R).其中e是自然對(duì)數(shù)的底數(shù).

(1)討論函數(shù)f(x)的單調(diào)性并求極值;

(2)令函數(shù)g(x)=f(x)+ex,若x∈[1,+∞)時(shí),g(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)

煉鋼是一個(gè)氧化降碳的過(guò)程,由于鋼水含碳量的多少直接影響冶煉時(shí)間的長(zhǎng)短,因此必須掌握鋼水含碳量和冶煉時(shí)間的關(guān)系.現(xiàn)已測(cè)得爐料熔化完畢時(shí)鋼水的含碳量x與冶煉時(shí)間y(從爐料熔化完畢到出鋼的時(shí)間)的一組數(shù)據(jù),如下表所示:

(1)據(jù)統(tǒng)計(jì)表明,之間具有線性相關(guān)關(guān)系,請(qǐng)用相關(guān)系數(shù)r加以說(shuō)明( ,則認(rèn)為yx有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒(méi)有較強(qiáng)的線性相關(guān)關(guān)系,r精確到0.001);

(2)建立y關(guān)于x的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)根據(jù)(2)中的結(jié)論,預(yù)測(cè)鋼水含碳量為160個(gè)0.01%的冶煉時(shí)間.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,

,相關(guān)系數(shù)

參考數(shù)據(jù):,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題是否正確(正確的在括號(hào)內(nèi)打“√”,錯(cuò)誤的打“×”).

1.________

2.________

3.________

4.________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

)若,使)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)分別是圓心在原點(diǎn),半徑為的圓上的動(dòng)點(diǎn).動(dòng)點(diǎn)從初始位置開(kāi)始,按逆時(shí)針?lè)较蛞越撬俣?/span>作圓周運(yùn)動(dòng),同時(shí)點(diǎn)從初始位置開(kāi)始,按順時(shí)針?lè)较蛞越撬俣?/span>作圓周運(yùn)動(dòng).記時(shí)刻,點(diǎn)的縱坐標(biāo)分別為.

(Ⅰ)求時(shí)刻,兩點(diǎn)間的距離;

(Ⅱ)求關(guān)于時(shí)間的函數(shù)關(guān)系式,并求當(dāng)時(shí),這個(gè)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn).

(1)位于第四象限?

(2)位于第一、三象限?

(3)位于直線yx上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷(xiāo)售這兩種商品所能獲得的利潤(rùn)依次是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=,Q= .今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案