15.若$\overrightarrow$=(cos$\frac{π}{12}$,cos$\frac{5π}{12}$),|$\overrightarrow{a}$|=2|$\overrightarrow$|,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-2,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

分析 根據(jù)平面向量的坐標運算與模長公式,數(shù)量積運算以及夾角公式,即可求出向量$\overrightarrow{a}$,$\overrightarrow$的夾角.

解答 解:$\overrightarrow$=(cos$\frac{π}{12}$,cos$\frac{5π}{12}$)
=(cos$\frac{π}{12}$,sin$\frac{π}{12}$),
∴|$\overrightarrow$|=$\sqrt{{cos}^{2}\frac{π}{12}{+sin}^{2}\frac{π}{12}}$=1,
∴|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,
∴($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=$\sqrt{3}$$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$
=$\sqrt{3}$×2×1×cosθ+12=-2,
∴cosθ=-$\frac{\sqrt{3}}{2}$;
又∵θ∈[0,π],
∴向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{5π}{6}$.
故選:C.

點評 本題考查了平面向量的坐標運算與模長公式,數(shù)量積運算以及夾角公式的應(yīng)用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.2C${\;}_{9}^{0}$-C${\;}_{9}^{1}$+2C${\;}_{9}^{2}$-C${\;}_{9}^{3}$+2C${\;}_{9}^{4}$-C${\;}_{9}^{5}$+2C${\;}_{9}^{6}$-C${\;}_{9}^{7}$+2C${\;}_{9}^{8}$-C${\;}_{9}^{9}$=256.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)a,b∈R,i是虛數(shù)單位,則“ab=0”是“復(fù)數(shù)a-bi為純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)p:實數(shù)x滿足x2+2ax-3a2<0(a>0),q:實數(shù)x滿足x2+2x-8<0,且?p是?q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知復(fù)數(shù)z1,z2滿足|z1-$\overline{{z}_{2}}$|=|1-z1z2||,則有(  )
A.|z1|<0且|z2|<1B.|z1|<1或|z2|<1C.|z1|=1且|z2|=1D.|z1|=1或|z2|=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某縣共有戶籍人口60萬人,該縣60歲以上、百歲以下的人口占比13.8%,百歲及以上的老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機抽取230人,得到如下頻數(shù)分布表:
 年齡段(歲)[60,70)[70,80)[80,90)[90,99)
 人數(shù)(人) 125 75 255
(1)從樣本中70歲及以上老人中采用分層抽樣的方法抽取21人進一步了解他們的生活狀況,則80歲及以上老人應(yīng)抽多少人?
(2)從(1)中所抽取的80歲及以上的老人中,再隨機抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關(guān)于加強新時期老年人優(yōu)待服務(wù)工作的意見》精神,制定如下老年人生活補貼措施,由省、市、縣三級財政分級撥款.
①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險實施辦法每月領(lǐng)取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補貼.
(a)百歲及以上老年人,每人每月發(fā)放345元生活補貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補貼.
試估計政府執(zhí)行此項補貼措施的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知棱長都相等正四棱錐的側(cè)面積為16$\sqrt{3}$,則該正四棱錐內(nèi)切球的表面積為(32-16$\sqrt{3}$)π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當$\frac{z}{xy}$取得最小值時,x+2y-z的最大值為(  )
A.1B.$\frac{9}{8}$C.2D.$\frac{9}{4}$

查看答案和解析>>

同步練習冊答案