3.設(shè)a,b∈R,i是虛數(shù)單位,則“ab=0”是“復(fù)數(shù)a-bi為純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義,結(jié)合復(fù)數(shù)的概念進(jìn)行判斷即可.

解答 解:若ab=0,則a=0或b=0.當(dāng)a=0時,復(fù)數(shù)a-bi為純虛數(shù),當(dāng)b=0時,復(fù)數(shù)a-bi為實(shí)數(shù),
所以,“ab=0”不一定得出“a-bi為純虛數(shù)”;
若a-bi為純虛數(shù),則a=0,則ab=0,
所以,“a-bi為純虛數(shù)”一定得出“ab=0”.
所以“ab=0”是“復(fù)數(shù)a-bi為純虛數(shù)”的必要不充分條件.
故選B.

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,掌握復(fù)數(shù)的概念是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若關(guān)于x的不等式f(x)>a2-2a-5對任意的x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,邊長為2的正方形 A BCD的頂點(diǎn) A,B分別在兩條互相垂直的射線 OP,OQ上滑動,則$\overrightarrow{{O}C}•\overrightarrow{{O}D}$的最大值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知α=-1090°.
(1)把α寫成β+k•360°(k∈Z,0°≤β<360°)的形式,并指出它是第幾象限角
(2)寫出與α終邊相同的角θ構(gòu)成的集合S,并把S中適合不等式-360°≤θ<360°的元素θ寫出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過點(diǎn)D(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N
(1)求拋物線方程及其焦點(diǎn)坐標(biāo),準(zhǔn)線方程;
(2)已知O為原點(diǎn),求證:∠MON為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且$f(1)=\frac{1}{2}$,不等式$f'(x)≤\frac{1}{x}+x$的解集為(0,1],則不等式$\frac{f(x)-lnx}{x^2}>\frac{1}{2}$的解集為( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\overrightarrow$=(cos$\frac{π}{12}$,cos$\frac{5π}{12}$),|$\overrightarrow{a}$|=2|$\overrightarrow$|,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-2,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x-2)[f′(x)-f(x)]>0,且f(4-x)=e4-2xf(x),則下列關(guān)于
f(x)的命題正確的是(  )
A.f(3)>e2f(1)B.f(3)<ef(2)C.f(4)<e4f(0)D.f(4)<e5f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某商場對甲、乙兩種品牌的牛奶進(jìn)行為期100天的營銷活動,為調(diào)查這100天的日銷售情況,用簡單隨機(jī)抽樣抽取10天進(jìn)行統(tǒng)計(jì),以它們的銷售數(shù)量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.已知該樣本中,甲品牌牛奶銷量的平均數(shù)為48件,乙品牌牛奶銷量的中位數(shù)為43件,將日銷量不低于50件的日期稱為“暢銷日”.
(1)求出x,y的值;
(2)以10天的銷量為樣本,估計(jì)100天的銷量,請完成這兩種品牌100天銷量的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為品牌與“暢銷日”天數(shù)相關(guān).
暢銷日天數(shù)非暢銷日天數(shù)合計(jì)
5050100              
3070100
合計(jì)80120200
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d為樣本容量)
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

同步練習(xí)冊答案