【題目】已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn),且與軸交于點(diǎn).

1)若直線的斜率,且,求的值;

2)若,軸上是否存在點(diǎn),總有?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

【答案】(1) (2)存在,

【解析】

1)依題意,設(shè),聯(lián)立方程可得,借助韋達(dá)定理表示,即可得到結(jié)果;

2)討論直線的斜率,直線存在斜率時(shí),聯(lián)立方程,借助韋達(dá)定理表示,即可得到點(diǎn).

1)解法一:依題意,設(shè),

聯(lián)立,整理得

,得,

,∴(舍去),

所以①式可化為,設(shè),,則,

.

解法二:依題意,設(shè),

聯(lián)立,整理得

,即,

,∴(舍去),

所以①式可化為,設(shè),,則,

.

2)當(dāng)直線斜率不存在時(shí),由對稱性知,存在點(diǎn)滿足,

若直線存在斜率,設(shè)為,聯(lián)立

整理得,

,∴,

設(shè)易知

,

,∵,∴,

所以.

綜上所述,當(dāng)時(shí),軸上存在點(diǎn),總有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)求的單調(diào)區(qū)間;

(II)討論上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),求函數(shù)的單調(diào)增區(qū)間;

2)設(shè),求證:存在唯一的,使得函數(shù)的圖象在點(diǎn)處的切線l與函數(shù)的圖象也相切;

3)求證:對任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車的春天來了!201835日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自201811日至20201231日,對購置的新能源汽車免征車輛購置稅.某人計(jì)劃于20185月購買一輛某品牌新能源汽車,他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解了近五個(gè)月的實(shí)際銷量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份編號

1

2

3

4

5

銷量(萬量)

0.5

0.6

1

1.4

1.7

1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌噷?shí)際銷量(萬輛)與月份編號之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測20185月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量;

22018612日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠(yuǎn)里程)對購車補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購買新能源汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值區(qū)間(萬元)

頻數(shù)

20

60

60

30

20

10

i)求這200位擬購買新能源汽車的消費(fèi)者對補(bǔ)貼金額的心理預(yù)期值的方差及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替,估計(jì)值精確到0.1);

ii)將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購買新能源汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取的3人中對補(bǔ)貼金額的心理預(yù)期值不低于3萬元的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:①回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,;②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游戲廠商對新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時(shí)以內(nèi)(3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿足關(guān)系式:;

②35小時(shí)(5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);

超過5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.

當(dāng)時(shí),寫出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;

該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美.如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標(biāo)原點(diǎn))的周長和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的優(yōu)美函數(shù).給出下列命題:

①對于任意一個(gè)圓,其優(yōu)美函數(shù)有無數(shù)個(gè);

②函數(shù)可以是某個(gè)圓的優(yōu)美函數(shù);

③正弦函數(shù)可以同時(shí)是無數(shù)個(gè)圓的優(yōu)美函數(shù);

④函數(shù)優(yōu)美函數(shù)的充要條件為函數(shù)的圖象是中心對稱圖形.

A.①④B.①③④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的偶函數(shù),滿足,當(dāng)時(shí),,若,,則,,的大小關(guān)系為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案