【題目】幾位大學生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件,為激發(fā)大家的學習興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動,這款軟件的激活碼為下列數(shù)學問題的答案:已知數(shù)列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項是,接下來的兩項是,再接下來的三項是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項和為2的整數(shù)冪,那么該軟件的激活碼是________。
【答案】
【解析】
由題意先將此數(shù)列分組,再求得前組的項之和為及項數(shù),由題意可知為2的整數(shù)冪,只需將消去即可,再分別討論即可得解.
解:由題意可知,將1、1、2、1、2、4、8、1、2、4、8、16、……,可分為,,,,,
根據(jù)等比數(shù)列前項和公式,求得每組和分別為, ,,,,
每組含有的項數(shù)為:,總共的項數(shù)為,
所有組的項之和為,由題意可知:為2的整數(shù)冪,只需將消去即可,
則①,解得,總共有項,不滿足,
②,解得,總共有項,不滿足,
③,解得,總共有項,不滿足,
④,解得,總共有項,滿足,
即該軟件的激活碼是,
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的一個焦點為,離心率為.
(1)求的標準方程;
(2)若動點為外一點,且到的兩條切線相互垂直,求的軌跡的方程;
(3)設(shè)的另一個焦點為,過上一點的切線與(2)所求軌跡交于點,,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在圓臺中,平面過上下底面的圓心,,點M在上,N為的中點,.
(1)求證:平面平面;
(2)當時,與底面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,且在上存在零點,求實數(shù)的取值范圍;
(2)若對任意,存在使,求實數(shù)的取值范圍;
(3)若存在實數(shù),使得當時,恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是一個三棱錐,是圓的直徑,是圓上的點,垂直圓所在的平面,,分別是棱,的中點.
(1)求證:平面;
(2)若二面角是,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在正常數(shù),使得對任意的,都有成立,我們稱函數(shù)為“同比不減函數(shù)”.
(1)求證:對任意正常數(shù),都不是“同比不減函數(shù)”;
(2)若函數(shù)是“同比不減函數(shù)”,求的取值范圍;
(3)是否存在正常數(shù),使得函數(shù)為“同比不減函數(shù)”,若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{bn}的前n項和為Tn,且T4=4,b5=6.
(1)求數(shù)列{bn}的通項公式;
(2)若正整數(shù)n1,n2,…,nt,…滿足5<n1<n2<…<nt,…且b3,b5,,,…,,…成等比數(shù)列,求數(shù)列{nt}的通項公式(t是正整數(shù));
(3)給出命題:在公比不等于1的等比數(shù)列{an}中,前n項和為Sn,若am,am+2,am+1成等差數(shù)列,則Sm,Sm+2,Sm+1也成等差數(shù)列.試判斷此命題的真假,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com