一條斜率為1的直線與離心率e=的橢圓C:交于P、Q兩點,直線與y軸交于點R,且,求直線和橢圓C的方程;
∵e=,∴,a2=2b2,則橢圓方程為=1,設l方程為:y=x+m,P(x1,y1),Q(x2,y2),
故有Δ=16m2-4×3(2m2-2b2)=8(-m2+3b2)>0
∴3b2>m2(*)
x1+x2=-m(1)
x1x2(m2-b2)(2)
·=-3得x1x2+y1y2=-3,
而y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2
所以2x1x2+m(x1+x2)+m2=-3⇒ (m2-b2)-m2+m2=-3,∴3m2-4b2=-9(3)
又R(0,m),=3,(-x1,m-y1)=3(x2,y2-m)
從而-x1=3x2(4)
由(1)(2)(4)得3m2=b2(5)
由(3)(5)解得b2=3,m=±1適合(*),
∴所求直線l方程為y=x+1或y=x-1;橢圓C的方程為=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓兩焦點分別為F1、F2、P是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點
(1)求P點坐標;
(2)求證直線AB的斜率為定值;
(3)求△PAB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果橢圓上一點P到焦點的距離等于6,那么點P到另一個焦點的距離是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左右焦點分別為,過且傾角為的直線交橢圓于兩點,對以下結論:①的周長為;②原點到的距離為;③;其中正確的結論有幾個
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓 ()的一個焦點坐標為,且長軸長是短軸長的倍.
(1)求橢圓的方程;
(2)設為坐標原點,橢圓與直線相交于兩個不同的點,線段的中點為,若直線的斜率為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的焦點為頂點,頂點為焦點的橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓經(jīng)過點,對稱軸為坐標軸,焦點軸上,離心率,
求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的離心率為,則的值為 ____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設A、B是橢圓上不同的兩點,點C(-3,0),若A、B、C共線,則的取值范圍是   ▲   

查看答案和解析>>

同步練習冊答案