如果橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離是            
4
答案應(yīng)為14
根據(jù)橢圓的定義可得|PF1|+|PF2|=2a,,根據(jù)橢圓
上一點(diǎn)P到焦點(diǎn)F1的距離等于6,可求點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離
解:根據(jù)橢圓的定義可得|PF1|+|PF2|=2a,
∵橢圓
上一點(diǎn)P到焦點(diǎn)F1的距離等于6
∴6+|PF2|=20
∴|PF2|=14
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè)、是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率,且其中一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.(Ⅰ)求橢圓C的方程;(Ⅱ)過點(diǎn)的動(dòng)直線l交橢圓CA、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓C:與圓F:的一個(gè)交點(diǎn),且圓心F是橢圓的一個(gè)焦點(diǎn),(1)求橢圓C的方程;(2)過F的直線交圓與P、Q兩點(diǎn),連AP、AQ分別交橢圓與M、N點(diǎn),試問直線MN是否過定點(diǎn)?若過定點(diǎn),則求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一條斜率為1的直線與離心率e=的橢圓C:交于P、Q兩點(diǎn),直線與y軸交于點(diǎn)R,且,求直線和橢圓C的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是橢圓=1上一點(diǎn),F1、F2是橢圓的焦點(diǎn),若|PF1|等于4,則|PF2|等于(  )
A.22B.21C.20D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓(m>n>0)和雙曲線(a>b>0)有相同的焦點(diǎn)F1,F(xiàn)2,P是兩條曲線的一個(gè)交點(diǎn),則|PF1|·|PF2|的值是                (。
A.m-aB.C.m2-a2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓+y2=1共焦點(diǎn)且過點(diǎn)P(2,1)的雙曲線方程是(  )
A.-y2=1B.-y2=1C.-=1 D.x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)M(-2,0)的直線L與橢圓x2+2y2=2交于AB兩點(diǎn),線段AB中點(diǎn)為N,設(shè)直線L的斜率為k1 (k1≠0),直線ON的斜率為k2,則k1k2的值為(   )
A.2B.-2C.1/2D.-1/2

查看答案和解析>>

同步練習(xí)冊答案